{"title":"同伦群与CW配合物","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.8","DOIUrl":null,"url":null,"abstract":"This chapter discusses some results about homotopy groups and CW complexes. Throughout this book, one needs to assume a certain amount of algebraic topology. A CW complex is a topological space built up from a discrete set of points by successively attaching cells one dimension at a time. The name CW complex refers to the two properties satisfied by a CW complex: closure-finiteness and weak topology. With continuous maps as morphisms, the CW complexes form a category. It turns out that this is the most appropriate category in which to do homotopy theory. The chapter also looks at fiber bundles.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy Groups and CW Complexes\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses some results about homotopy groups and CW complexes. Throughout this book, one needs to assume a certain amount of algebraic topology. A CW complex is a topological space built up from a discrete set of points by successively attaching cells one dimension at a time. The name CW complex refers to the two properties satisfied by a CW complex: closure-finiteness and weak topology. With continuous maps as morphisms, the CW complexes form a category. It turns out that this is the most appropriate category in which to do homotopy theory. The chapter also looks at fiber bundles.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter discusses some results about homotopy groups and CW complexes. Throughout this book, one needs to assume a certain amount of algebraic topology. A CW complex is a topological space built up from a discrete set of points by successively attaching cells one dimension at a time. The name CW complex refers to the two properties satisfied by a CW complex: closure-finiteness and weak topology. With continuous maps as morphisms, the CW complexes form a category. It turns out that this is the most appropriate category in which to do homotopy theory. The chapter also looks at fiber bundles.