用MRF正则化方法检测相互显著的地标对

Yangming Ou, A. Besbes, M. Bilello, Mohamed Mansour, C. Davatzikos, N. Paragios
{"title":"用MRF正则化方法检测相互显著的地标对","authors":"Yangming Ou, A. Besbes, M. Bilello, Mohamed Mansour, C. Davatzikos, N. Paragios","doi":"10.1109/ISBI.2010.5490324","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for extracting mutually-salient landmark pairs for registration. Traditional methods detect landmarks one-by-one and separately in two images. Therefore, the detected landmarks might inherit low dis-criminability and are not necessarily good for matching. In contrast, our method detects landmarks pair-by-pair across images, and those pairs are required to be mutually-salient, i.e., uniquely corresponding to each other. The second merit of our framework is that, instead of finding individually optimal correspondence, which is a local approach and could cause self-intersection of the resultant deformation, our framework adopts a Markov-random-field (MRF)-based spatial arrangement to select the globally optimal landmark pairs. In this way, the geometric consistency of the correspondences is maintained and the resultant deformations are relatively smooth and topology-preserving. Promising experimental validation through a radiologist's evaluation of the established correspondences is presented.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Detecting mutually-salient landmark pairs with MRF regularization\",\"authors\":\"Yangming Ou, A. Besbes, M. Bilello, Mohamed Mansour, C. Davatzikos, N. Paragios\",\"doi\":\"10.1109/ISBI.2010.5490324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework for extracting mutually-salient landmark pairs for registration. Traditional methods detect landmarks one-by-one and separately in two images. Therefore, the detected landmarks might inherit low dis-criminability and are not necessarily good for matching. In contrast, our method detects landmarks pair-by-pair across images, and those pairs are required to be mutually-salient, i.e., uniquely corresponding to each other. The second merit of our framework is that, instead of finding individually optimal correspondence, which is a local approach and could cause self-intersection of the resultant deformation, our framework adopts a Markov-random-field (MRF)-based spatial arrangement to select the globally optimal landmark pairs. In this way, the geometric consistency of the correspondences is maintained and the resultant deformations are relatively smooth and topology-preserving. Promising experimental validation through a radiologist's evaluation of the established correspondences is presented.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提出了一个框架来提取相互显著的地标对进行配准。传统的方法是在两幅图像中逐个检测地标。因此,检测到的标记可能具有较低的可分辨性,并且不一定适合匹配。相比之下,我们的方法是在图像中成对地检测地标,这些对被要求是相互显著的,即彼此唯一对应。该框架的第二个优点是,我们的框架采用基于马尔可夫随机场(MRF)的空间排列来选择全局最优的地标对,而不是寻找单独的最优对应,这是一种局部方法,可能导致结果变形的自交。通过这种方式,保持了对应的几何一致性,并且生成的变形相对光滑且拓扑保持。有希望的实验验证,通过一个放射科医生的评估建立相应的提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting mutually-salient landmark pairs with MRF regularization
In this paper, we present a framework for extracting mutually-salient landmark pairs for registration. Traditional methods detect landmarks one-by-one and separately in two images. Therefore, the detected landmarks might inherit low dis-criminability and are not necessarily good for matching. In contrast, our method detects landmarks pair-by-pair across images, and those pairs are required to be mutually-salient, i.e., uniquely corresponding to each other. The second merit of our framework is that, instead of finding individually optimal correspondence, which is a local approach and could cause self-intersection of the resultant deformation, our framework adopts a Markov-random-field (MRF)-based spatial arrangement to select the globally optimal landmark pairs. In this way, the geometric consistency of the correspondences is maintained and the resultant deformations are relatively smooth and topology-preserving. Promising experimental validation through a radiologist's evaluation of the established correspondences is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信