快速费米加速和熵增长

T. Pereira, D. Turaev
{"title":"快速费米加速和熵增长","authors":"T. Pereira, D. Turaev","doi":"10.1051/MMNP/201510304","DOIUrl":null,"url":null,"abstract":"Fermi acceleration is the process of energy transfer from massive objects in slow motion to light objects that move fast. The model for such process is a time-dependent Hamiltonian system. As the parameters of the system change with time, the energy is no longer conserved, which makes the acceleration possible. One of the main problems is how to generate a sustained and robust energy growth. We show that the non-ergodicity of any chaotic Hamiltonian system must universally lead to the exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of a Geometric Brownian Motion with a positive drift and relate it to the entropy increase.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast Fermi Acceleration and Entropy Growth\",\"authors\":\"T. Pereira, D. Turaev\",\"doi\":\"10.1051/MMNP/201510304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fermi acceleration is the process of energy transfer from massive objects in slow motion to light objects that move fast. The model for such process is a time-dependent Hamiltonian system. As the parameters of the system change with time, the energy is no longer conserved, which makes the acceleration possible. One of the main problems is how to generate a sustained and robust energy growth. We show that the non-ergodicity of any chaotic Hamiltonian system must universally lead to the exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of a Geometric Brownian Motion with a positive drift and relate it to the entropy increase.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MMNP/201510304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MMNP/201510304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

费米加速是能量从缓慢运动的大质量物体转移到快速运动的轻物体的过程。这个过程的模型是一个随时间变化的哈密顿系统。由于系统参数随时间变化,能量不再守恒,使得加速成为可能。主要问题之一是如何实现持续而强劲的能源增长。我们证明了任何混沌哈密顿系统的非遍历性必然导致在参数的缓慢周期性变化下能量呈指数增长。我们根据具有正漂移的几何布朗运动为这一过程建立了一个模型,并将其与熵增加联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Fermi Acceleration and Entropy Growth
Fermi acceleration is the process of energy transfer from massive objects in slow motion to light objects that move fast. The model for such process is a time-dependent Hamiltonian system. As the parameters of the system change with time, the energy is no longer conserved, which makes the acceleration possible. One of the main problems is how to generate a sustained and robust energy growth. We show that the non-ergodicity of any chaotic Hamiltonian system must universally lead to the exponential growth of energy at a slow periodic variation of parameters. We build a model for this process in terms of a Geometric Brownian Motion with a positive drift and relate it to the entropy increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信