Kohei Fukuhara, Ryo Kumagai, Fukawa Yuta, S. Tanabe, Hiroki Kawano, Yoshihiro Ohta, Hiroyuki Sato
{"title":"基于数字孪生的建筑设施演化控制优化","authors":"Kohei Fukuhara, Ryo Kumagai, Fukawa Yuta, S. Tanabe, Hiroki Kawano, Yoshihiro Ohta, Hiroyuki Sato","doi":"10.1109/CEC55065.2022.9870207","DOIUrl":null,"url":null,"abstract":"This work addresses a real-world building facility control problem by using evolutionary algorithms. The variables are facility control parameters, such as the start/stop time of air-conditioning, lighting, and ventilation operation, etc. The problem has six objectives: annual energy consumption, elec-tricity cost, overall satisfaction, thermal satisfaction, indoor air quality satisfaction, and lighting satisfaction. The problem has five constraints: power consumption, temperature, humidity, $\\mathbf{CO}_{2}$ concentration, and average illuminance. To solve the problem, we utilize IBEA framework. For efficient solution generation, we employ the steady-state model for IBEA. We propose the total constraint win-loss rank for multiple constraints to treat multiple constraints equally. Experimental results on artificial test problems and building facility control problems show that the proposed constraint IBEA with steady-state and total con-straint win-loss rank archives better search performance than conventional representative algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Digital Twin Based Evolutionary Building Facility Control Optimization\",\"authors\":\"Kohei Fukuhara, Ryo Kumagai, Fukawa Yuta, S. Tanabe, Hiroki Kawano, Yoshihiro Ohta, Hiroyuki Sato\",\"doi\":\"10.1109/CEC55065.2022.9870207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses a real-world building facility control problem by using evolutionary algorithms. The variables are facility control parameters, such as the start/stop time of air-conditioning, lighting, and ventilation operation, etc. The problem has six objectives: annual energy consumption, elec-tricity cost, overall satisfaction, thermal satisfaction, indoor air quality satisfaction, and lighting satisfaction. The problem has five constraints: power consumption, temperature, humidity, $\\\\mathbf{CO}_{2}$ concentration, and average illuminance. To solve the problem, we utilize IBEA framework. For efficient solution generation, we employ the steady-state model for IBEA. We propose the total constraint win-loss rank for multiple constraints to treat multiple constraints equally. Experimental results on artificial test problems and building facility control problems show that the proposed constraint IBEA with steady-state and total con-straint win-loss rank archives better search performance than conventional representative algorithms.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Twin Based Evolutionary Building Facility Control Optimization
This work addresses a real-world building facility control problem by using evolutionary algorithms. The variables are facility control parameters, such as the start/stop time of air-conditioning, lighting, and ventilation operation, etc. The problem has six objectives: annual energy consumption, elec-tricity cost, overall satisfaction, thermal satisfaction, indoor air quality satisfaction, and lighting satisfaction. The problem has five constraints: power consumption, temperature, humidity, $\mathbf{CO}_{2}$ concentration, and average illuminance. To solve the problem, we utilize IBEA framework. For efficient solution generation, we employ the steady-state model for IBEA. We propose the total constraint win-loss rank for multiple constraints to treat multiple constraints equally. Experimental results on artificial test problems and building facility control problems show that the proposed constraint IBEA with steady-state and total con-straint win-loss rank archives better search performance than conventional representative algorithms.