鲁棒在线多人脸跟踪系统

Martin Soldic, Darijan Marcetic, S. Ribaric
{"title":"鲁棒在线多人脸跟踪系统","authors":"Martin Soldic, Darijan Marcetic, S. Ribaric","doi":"10.23919/ELMAR.2018.8534679","DOIUrl":null,"url":null,"abstract":"This paper presents a system for robust online multi-face tracking in video sequences recorded by a stationary camera. Several components and algorithms are combined in the system architecture: an NPD robust face detector, a DSST tracker augmented with FIFO long- and short-term memories (LTMs/STMs), trajectory memories (TMs), a PSR-based tracking failure detector and a Hungarian algorithm for trajectory assignment. The paper gives the preliminary experimental results, expressed by MOTA, MOTP and IDS metrics, obtained on the benchmark dataset consisting of three videos.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Robust Online Multi-Face Tracking System\",\"authors\":\"Martin Soldic, Darijan Marcetic, S. Ribaric\",\"doi\":\"10.23919/ELMAR.2018.8534679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system for robust online multi-face tracking in video sequences recorded by a stationary camera. Several components and algorithms are combined in the system architecture: an NPD robust face detector, a DSST tracker augmented with FIFO long- and short-term memories (LTMs/STMs), trajectory memories (TMs), a PSR-based tracking failure detector and a Hungarian algorithm for trajectory assignment. The paper gives the preliminary experimental results, expressed by MOTA, MOTP and IDS metrics, obtained on the benchmark dataset consisting of three videos.\",\"PeriodicalId\":175742,\"journal\":{\"name\":\"2018 International Symposium ELMAR\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELMAR.2018.8534679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于静止摄像机的视频序列鲁棒在线多人脸跟踪系统。系统架构中结合了几个组件和算法:NPD鲁棒人脸检测器,DSST跟踪器,增强了FIFO长短期记忆(LTMs/STMs),轨迹记忆(TMs),基于psr的跟踪故障检测器和匈牙利轨迹分配算法。本文给出了在由三个视频组成的基准数据集上获得的以MOTA、MOTP和IDS指标表示的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Online Multi-Face Tracking System
This paper presents a system for robust online multi-face tracking in video sequences recorded by a stationary camera. Several components and algorithms are combined in the system architecture: an NPD robust face detector, a DSST tracker augmented with FIFO long- and short-term memories (LTMs/STMs), trajectory memories (TMs), a PSR-based tracking failure detector and a Hungarian algorithm for trajectory assignment. The paper gives the preliminary experimental results, expressed by MOTA, MOTP and IDS metrics, obtained on the benchmark dataset consisting of three videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信