CUDA在gpu上加速光照预处理

Nicholas A. Vandal, M. Savvides
{"title":"CUDA在gpu上加速光照预处理","authors":"Nicholas A. Vandal, M. Savvides","doi":"10.1109/ICDSP.2011.6004977","DOIUrl":null,"url":null,"abstract":"In this paper we develop a parallelized implementation of the anisotropic diffusion image preprocessing algorithm for illumination invariant face recognition proposed by Gross and Brajovic. Our implementation employs Red-Black Gauss-Seidel relaxation running on inexpensive Graphics Processing Units (GPUs) programmed with Nvidia's CUDA framework. We are able to achieve a 20X speedup over a multithreaded implementation running on a quadcore CPU. Additionally a comparison to an open-source implementation of anisotropic diffusion in the Torch3vision library is performed, demonstrating a GPU speedup of greater than 900X over this commonly used machine vision library.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CUDA accelerated illumination preprocessing on GPUs\",\"authors\":\"Nicholas A. Vandal, M. Savvides\",\"doi\":\"10.1109/ICDSP.2011.6004977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a parallelized implementation of the anisotropic diffusion image preprocessing algorithm for illumination invariant face recognition proposed by Gross and Brajovic. Our implementation employs Red-Black Gauss-Seidel relaxation running on inexpensive Graphics Processing Units (GPUs) programmed with Nvidia's CUDA framework. We are able to achieve a 20X speedup over a multithreaded implementation running on a quadcore CPU. Additionally a comparison to an open-source implementation of anisotropic diffusion in the Torch3vision library is performed, demonstrating a GPU speedup of greater than 900X over this commonly used machine vision library.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6004977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文对Gross和Brajovic提出的用于光照不变人脸识别的各向异性扩散图像预处理算法进行了并行化实现。我们的实现采用红黑高斯-赛德尔松弛运行在使用Nvidia的CUDA框架编程的廉价图形处理单元(gpu)上。我们能够在四核CPU上运行的多线程实现上实现20倍的加速。此外,与Torch3vision库中的各向异性扩散的开源实现进行了比较,证明GPU加速比这个常用的机器视觉库提高了900X以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CUDA accelerated illumination preprocessing on GPUs
In this paper we develop a parallelized implementation of the anisotropic diffusion image preprocessing algorithm for illumination invariant face recognition proposed by Gross and Brajovic. Our implementation employs Red-Black Gauss-Seidel relaxation running on inexpensive Graphics Processing Units (GPUs) programmed with Nvidia's CUDA framework. We are able to achieve a 20X speedup over a multithreaded implementation running on a quadcore CPU. Additionally a comparison to an open-source implementation of anisotropic diffusion in the Torch3vision library is performed, demonstrating a GPU speedup of greater than 900X over this commonly used machine vision library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信