数据增强的前向噪声调整方案

Francisco J. Moreno-Barea, Fiammetta Strazzera, J. M. Jerez, D. Urda, L. Franco
{"title":"数据增强的前向噪声调整方案","authors":"Francisco J. Moreno-Barea, Fiammetta Strazzera, J. M. Jerez, D. Urda, L. Franco","doi":"10.1109/SSCI.2018.8628917","DOIUrl":null,"url":null,"abstract":"Data augmentation has been proven particularly effective for image classification tasks where a significant boost of prediction accuracy can be obtained when the technique is combined with the use of Deep Learning architectures. Unfortunately, for non-image data the situation is quite different and the positive effect of augmenting the training set size is much smaller. In this work, we propose a method that creates new samples by adjusting the level of noise for individual input variables previously ranked by their relevance level. Results from several tests are analyzed using nine benchmark data sets when the augmented and original data are used for supervised training on Deep Learning architectures.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Forward Noise Adjustment Scheme for Data Augmentation\",\"authors\":\"Francisco J. Moreno-Barea, Fiammetta Strazzera, J. M. Jerez, D. Urda, L. Franco\",\"doi\":\"10.1109/SSCI.2018.8628917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data augmentation has been proven particularly effective for image classification tasks where a significant boost of prediction accuracy can be obtained when the technique is combined with the use of Deep Learning architectures. Unfortunately, for non-image data the situation is quite different and the positive effect of augmenting the training set size is much smaller. In this work, we propose a method that creates new samples by adjusting the level of noise for individual input variables previously ranked by their relevance level. Results from several tests are analyzed using nine benchmark data sets when the augmented and original data are used for supervised training on Deep Learning architectures.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

数据增强已被证明对图像分类任务特别有效,当该技术与深度学习架构的使用相结合时,可以显著提高预测精度。不幸的是,对于非图像数据,情况就大不相同了,增加训练集大小的积极效果要小得多。在这项工作中,我们提出了一种方法,该方法通过调整先前按相关水平排序的单个输入变量的噪声水平来创建新样本。当增强数据和原始数据用于深度学习架构的监督训练时,使用9个基准数据集分析了几个测试的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forward Noise Adjustment Scheme for Data Augmentation
Data augmentation has been proven particularly effective for image classification tasks where a significant boost of prediction accuracy can be obtained when the technique is combined with the use of Deep Learning architectures. Unfortunately, for non-image data the situation is quite different and the positive effect of augmenting the training set size is much smaller. In this work, we propose a method that creates new samples by adjusting the level of noise for individual input variables previously ranked by their relevance level. Results from several tests are analyzed using nine benchmark data sets when the augmented and original data are used for supervised training on Deep Learning architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信