{"title":"基于U-Net的非接触式指纹语义分割技术述评","authors":"Puneet Nahar, Preeti Gupta, Harvinder Kaur","doi":"10.1109/IATMSI56455.2022.10119359","DOIUrl":null,"url":null,"abstract":"Touch-based fingerprints are widely used in today's world; even with all the success, the touch-based nature of these is a threat, especially in this COVID-19 period. A solution to the same is the introduction of Touchless Fingerprint Technology. The workflow of a touchless system varies vastly from its touch-based counterpart in terms of acquisition, pre-processing, image enhancement, and fingerprint verification. One significant difference is the methods used to segment desired fingerprint regions. This literature focuses on pixel-level classification or semantic segmentation using U-Net, a key yet challenging task. A plethora of semantic segmentation methods have been applied in this field. In this literature, a spectrum of efforts in the field of semantic segmentation using U-Net is investigated along with the components that are integral while training and testing a model, like optimizers, loss functions, and metrics used for evaluation and enumeration of results obtained.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-Net based Semantic Segmentation for Touchless Fingerprint Technology: A Reflective Review\",\"authors\":\"Puneet Nahar, Preeti Gupta, Harvinder Kaur\",\"doi\":\"10.1109/IATMSI56455.2022.10119359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Touch-based fingerprints are widely used in today's world; even with all the success, the touch-based nature of these is a threat, especially in this COVID-19 period. A solution to the same is the introduction of Touchless Fingerprint Technology. The workflow of a touchless system varies vastly from its touch-based counterpart in terms of acquisition, pre-processing, image enhancement, and fingerprint verification. One significant difference is the methods used to segment desired fingerprint regions. This literature focuses on pixel-level classification or semantic segmentation using U-Net, a key yet challenging task. A plethora of semantic segmentation methods have been applied in this field. In this literature, a spectrum of efforts in the field of semantic segmentation using U-Net is investigated along with the components that are integral while training and testing a model, like optimizers, loss functions, and metrics used for evaluation and enumeration of results obtained.\",\"PeriodicalId\":221211,\"journal\":{\"name\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IATMSI56455.2022.10119359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
U-Net based Semantic Segmentation for Touchless Fingerprint Technology: A Reflective Review
Touch-based fingerprints are widely used in today's world; even with all the success, the touch-based nature of these is a threat, especially in this COVID-19 period. A solution to the same is the introduction of Touchless Fingerprint Technology. The workflow of a touchless system varies vastly from its touch-based counterpart in terms of acquisition, pre-processing, image enhancement, and fingerprint verification. One significant difference is the methods used to segment desired fingerprint regions. This literature focuses on pixel-level classification or semantic segmentation using U-Net, a key yet challenging task. A plethora of semantic segmentation methods have been applied in this field. In this literature, a spectrum of efforts in the field of semantic segmentation using U-Net is investigated along with the components that are integral while training and testing a model, like optimizers, loss functions, and metrics used for evaluation and enumeration of results obtained.