基于支持向量机和KNN算法的跆拳道踢腿分类

Rianta Athallah Dharmmesta, I. Jaya, Achmad Rizal, Istiqomah
{"title":"基于支持向量机和KNN算法的跆拳道踢腿分类","authors":"Rianta Athallah Dharmmesta, I. Jaya, Achmad Rizal, Istiqomah","doi":"10.1109/IAICT55358.2022.9887475","DOIUrl":null,"url":null,"abstract":"Taekwondo is one of the most popular martial arts in Indonesia. The number of competitions held at various regional levels proves that taekwondo is popular. In an online match, judges assess movement through video so that errors can occur in judging the type of kick. No research discusses the classification of kick types. However, several related studies examine monitoring human movement using SVM and KNN algorithms. This experiment aims to determine the performance of the SVM and KNN algorithms in classifying taekwondo foot kicks. The experiment results show that the SVM and KNN algorithms effectively classify taekwondo foot kick types. Using the kurtosis feature, the SVM algorithm obtained an accuracy rate 91.6%. As for KNN, the accuracy rate is 96.8% with the kurtosis feature.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Foot Kicks in Taekwondo Using SVM (Support Vector Machine) and KNN (K-Nearest Neighbors) Algorithms\",\"authors\":\"Rianta Athallah Dharmmesta, I. Jaya, Achmad Rizal, Istiqomah\",\"doi\":\"10.1109/IAICT55358.2022.9887475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taekwondo is one of the most popular martial arts in Indonesia. The number of competitions held at various regional levels proves that taekwondo is popular. In an online match, judges assess movement through video so that errors can occur in judging the type of kick. No research discusses the classification of kick types. However, several related studies examine monitoring human movement using SVM and KNN algorithms. This experiment aims to determine the performance of the SVM and KNN algorithms in classifying taekwondo foot kicks. The experiment results show that the SVM and KNN algorithms effectively classify taekwondo foot kick types. Using the kurtosis feature, the SVM algorithm obtained an accuracy rate 91.6%. As for KNN, the accuracy rate is 96.8% with the kurtosis feature.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

跆拳道是印度尼西亚最受欢迎的武术之一。在各个地区举办的比赛数量证明跆拳道是受欢迎的。在一场在线比赛中,裁判通过视频来评估球员的动作,以便在判断踢球类型时出现错误。没有研究讨论踢腿类型的分类。然而,一些相关的研究使用支持向量机和KNN算法来监测人体运动。本实验旨在确定SVM和KNN算法在跆拳道脚踢分类中的性能。实验结果表明,SVM和KNN算法能有效地对跆拳道踢脚类型进行分类。利用峰度特征,SVM算法的准确率为91.6%。对于KNN,具有峰度特征的准确率为96.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Foot Kicks in Taekwondo Using SVM (Support Vector Machine) and KNN (K-Nearest Neighbors) Algorithms
Taekwondo is one of the most popular martial arts in Indonesia. The number of competitions held at various regional levels proves that taekwondo is popular. In an online match, judges assess movement through video so that errors can occur in judging the type of kick. No research discusses the classification of kick types. However, several related studies examine monitoring human movement using SVM and KNN algorithms. This experiment aims to determine the performance of the SVM and KNN algorithms in classifying taekwondo foot kicks. The experiment results show that the SVM and KNN algorithms effectively classify taekwondo foot kick types. Using the kurtosis feature, the SVM algorithm obtained an accuracy rate 91.6%. As for KNN, the accuracy rate is 96.8% with the kurtosis feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信