一种盲反卷积算法的并行化与自动化

Charles L. Matson, K. Borelli
{"title":"一种盲反卷积算法的并行化与自动化","authors":"Charles L. Matson, K. Borelli","doi":"10.1109/HPCMP-UGC.2006.57","DOIUrl":null,"url":null,"abstract":"Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to any specific computer hardware architecture. We also describe briefly our progress in automating algorithm parameter selection","PeriodicalId":173959,"journal":{"name":"2006 HPCMP Users Group Conference (HPCMP-UGC'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallelization and Automation of a Blind Deconvolution Algorithm\",\"authors\":\"Charles L. Matson, K. Borelli\",\"doi\":\"10.1109/HPCMP-UGC.2006.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to any specific computer hardware architecture. We also describe briefly our progress in automating algorithm parameter selection\",\"PeriodicalId\":173959,\"journal\":{\"name\":\"2006 HPCMP Users Group Conference (HPCMP-UGC'06)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 HPCMP Users Group Conference (HPCMP-UGC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCMP-UGC.2006.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 HPCMP Users Group Conference (HPCMP-UGC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCMP-UGC.2006.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了获得更高分辨率的图像,通常需要对图像进行去模糊处理。去模糊需要对模糊功能的了解,这些信息通常不能从模糊图像中单独获得。盲反卷积算法通过从模糊图像中联合估计高分辨率图像和模糊函数来克服这一问题。因为盲反卷积算法本质上是迭代的,它们可能需要几分钟到几天的时间来消除图像的模糊,这取决于用于消除模糊的数据帧数。本文介绍了一种盲反卷积算法的并行化研究进展,以提高其执行速度。这一进展包括子帧并行化和不针对任何特定计算机硬件体系结构的代码结构。本文还简要介绍了自动化算法参数选择的研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization and Automation of a Blind Deconvolution Algorithm
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to any specific computer hardware architecture. We also describe briefly our progress in automating algorithm parameter selection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信