一种改进的极限学习机混合正则化方法

Liangjuan Zhou, Wei Miao
{"title":"一种改进的极限学习机混合正则化方法","authors":"Liangjuan Zhou, Wei Miao","doi":"10.1145/3573834.3574501","DOIUrl":null,"url":null,"abstract":"Extreme learning machine (ELM) is a network model that arbitrarily initializes the first hidden layer and can be computed speedily. In order to improve the classification performance of ELM, a ℓ2 and ℓ0.5 regularization ELM model (ℓ2-ℓ0.5-ELM) is proposed in this paper. An iterative optimization algorithm of the fixed point contraction mapping is applied to solve the ℓ2-ℓ0.5-ELM model. The convergence and sparsity of the proposed method are discussed and analyzed under reasonable assumptions. The performance of the proposed ℓ2-ℓ0.5-ELM method is compared with BP, SVM, ELM, ℓ0.5-ELM, ℓ1-ELM, ℓ2-ELM and ℓ2-ℓ1ELM, the results show that the prediction accuracy, sparsity, and stability of the ℓ2-ℓ0.5-ELM are better than the other 7 models.","PeriodicalId":345434,"journal":{"name":"Proceedings of the 4th International Conference on Advanced Information Science and System","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved hybrid regularization approach for extreme learning machine\",\"authors\":\"Liangjuan Zhou, Wei Miao\",\"doi\":\"10.1145/3573834.3574501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme learning machine (ELM) is a network model that arbitrarily initializes the first hidden layer and can be computed speedily. In order to improve the classification performance of ELM, a ℓ2 and ℓ0.5 regularization ELM model (ℓ2-ℓ0.5-ELM) is proposed in this paper. An iterative optimization algorithm of the fixed point contraction mapping is applied to solve the ℓ2-ℓ0.5-ELM model. The convergence and sparsity of the proposed method are discussed and analyzed under reasonable assumptions. The performance of the proposed ℓ2-ℓ0.5-ELM method is compared with BP, SVM, ELM, ℓ0.5-ELM, ℓ1-ELM, ℓ2-ELM and ℓ2-ℓ1ELM, the results show that the prediction accuracy, sparsity, and stability of the ℓ2-ℓ0.5-ELM are better than the other 7 models.\",\"PeriodicalId\":345434,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"volume\":\"415 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573834.3574501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573834.3574501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极限学习机(Extreme learning machine, ELM)是一种可以任意初始化第一隐层的网络模型,可以快速计算。为了提高ELM的分类性能,本文提出了一种l2和0.5正则化ELM模型(l2 - 0.5-ELM)。采用不动点收缩映射的迭代优化算法求解了2- 0.5-ELM模型。在合理的假设条件下,讨论并分析了该方法的收敛性和稀疏性。将该方法与BP、SVM、ELM、0.5-ELM、1-ELM、2-ELM和2- 1ELM进行了性能比较,结果表明,2- 0.5-ELM的预测精度、稀疏性和稳定性均优于其他7种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved hybrid regularization approach for extreme learning machine
Extreme learning machine (ELM) is a network model that arbitrarily initializes the first hidden layer and can be computed speedily. In order to improve the classification performance of ELM, a ℓ2 and ℓ0.5 regularization ELM model (ℓ2-ℓ0.5-ELM) is proposed in this paper. An iterative optimization algorithm of the fixed point contraction mapping is applied to solve the ℓ2-ℓ0.5-ELM model. The convergence and sparsity of the proposed method are discussed and analyzed under reasonable assumptions. The performance of the proposed ℓ2-ℓ0.5-ELM method is compared with BP, SVM, ELM, ℓ0.5-ELM, ℓ1-ELM, ℓ2-ELM and ℓ2-ℓ1ELM, the results show that the prediction accuracy, sparsity, and stability of the ℓ2-ℓ0.5-ELM are better than the other 7 models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信