基于beta函数的模糊系统的进化方法

C. Aouiti, A. Alimi, F. Karray, A. Maalej
{"title":"基于beta函数的模糊系统的进化方法","authors":"C. Aouiti, A. Alimi, F. Karray, A. Maalej","doi":"10.1109/FUZZ.2003.1209358","DOIUrl":null,"url":null,"abstract":"We propose an evolutionary method for the design of Beta fuzzy systems (BFS). Classical training algorithms start with a predetermined number of fuzzy rules for fuzzy systems. Generally speaking, the fuzzy system created is either insufficient or over-complicated. This paper describes a hierarchical genetic learning model of the BFS. In order to examine the performance of the proposed algorithm, it is used for the identification of an induction machine fuzzy plant model. The results obtained have been encouraging.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolutionary approach for the beta function based fuzzy systems\",\"authors\":\"C. Aouiti, A. Alimi, F. Karray, A. Maalej\",\"doi\":\"10.1109/FUZZ.2003.1209358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an evolutionary method for the design of Beta fuzzy systems (BFS). Classical training algorithms start with a predetermined number of fuzzy rules for fuzzy systems. Generally speaking, the fuzzy system created is either insufficient or over-complicated. This paper describes a hierarchical genetic learning model of the BFS. In order to examine the performance of the proposed algorithm, it is used for the identification of an induction machine fuzzy plant model. The results obtained have been encouraging.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1209358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种进化方法来设计Beta模糊系统(BFS)。经典的训练算法从模糊系统的预定数量的模糊规则开始。一般来说,所创建的模糊系统要么不够充分,要么过于复杂。本文描述了一种BFS的分层遗传学习模型。为了检验该算法的性能,将其应用于感应电机模糊对象模型的辨识。取得的结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary approach for the beta function based fuzzy systems
We propose an evolutionary method for the design of Beta fuzzy systems (BFS). Classical training algorithms start with a predetermined number of fuzzy rules for fuzzy systems. Generally speaking, the fuzzy system created is either insufficient or over-complicated. This paper describes a hierarchical genetic learning model of the BFS. In order to examine the performance of the proposed algorithm, it is used for the identification of an induction machine fuzzy plant model. The results obtained have been encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信