基于简单核函数的二阶锥规划的内点法

Li Dong, Jingyong Tang
{"title":"基于简单核函数的二阶锥规划的内点法","authors":"Li Dong, Jingyong Tang","doi":"10.1109/CINC.2010.5643888","DOIUrl":null,"url":null,"abstract":"Interior-point methods not only are the most effective methods in practice but also have polynomial-time complexity. In this paper we present a primal-dual interiorpoint algorithm for second-order cone programming problems based on a simple kernel function. We derive the iteration bounds O(nlogε/n over n) and O(√nlogε/n over n) for large- and small-update methods, respectively, which are as good as those in the linear programming.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interior-point method for second-order cone programming based on a simple kernel function\",\"authors\":\"Li Dong, Jingyong Tang\",\"doi\":\"10.1109/CINC.2010.5643888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interior-point methods not only are the most effective methods in practice but also have polynomial-time complexity. In this paper we present a primal-dual interiorpoint algorithm for second-order cone programming problems based on a simple kernel function. We derive the iteration bounds O(nlogε/n over n) and O(√nlogε/n over n) for large- and small-update methods, respectively, which are as good as those in the linear programming.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

内点法是实践中最有效的方法,但具有多项式的时间复杂度。本文提出了一种基于简单核函数的二阶锥规划问题的原-对偶内点算法。我们分别导出了大更新方法和小更新方法的迭代界O(nlogε/n /n)和O(√nlogε/n /n),它们与线性规划中的迭代界一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior-point method for second-order cone programming based on a simple kernel function
Interior-point methods not only are the most effective methods in practice but also have polynomial-time complexity. In this paper we present a primal-dual interiorpoint algorithm for second-order cone programming problems based on a simple kernel function. We derive the iteration bounds O(nlogε/n over n) and O(√nlogε/n over n) for large- and small-update methods, respectively, which are as good as those in the linear programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信