Liang Li, Dixin Tang, Taoying Liu, Hong Liu, Wei Li, Chenzhou Cui
{"title":"优化Hive上的Join操作加速天文学交叉匹配","authors":"Liang Li, Dixin Tang, Taoying Liu, Hong Liu, Wei Li, Chenzhou Cui","doi":"10.1109/IPDPSW.2014.193","DOIUrl":null,"url":null,"abstract":"Cross-matching in astronomy is a basic procedure for comprehensibly analyzing the relations among different celestial objects. The aim is to search celestial objects in different catalogs and to determine if they are the same object. Basically, cross-matching can be expressed as a join query statement. Since celestial catalogs usually contain billion of stars, the join operator must be carefully designed and optimized for efficiency. In this paper, we focus on fulfilling cross-matching by MapReduce based join operators. The challenge is how to optimize the join operators to satisfy specific requirements of cross-matching. Therefore, we propose an optimized method and investigate its efficiency by theoretical analysis and experiment. Our study shows that the method has a remarkable improvement to previous work, especially when the data is very large.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimizing the Join Operation on Hive to Accelerate Cross-Matching in Astronomy\",\"authors\":\"Liang Li, Dixin Tang, Taoying Liu, Hong Liu, Wei Li, Chenzhou Cui\",\"doi\":\"10.1109/IPDPSW.2014.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-matching in astronomy is a basic procedure for comprehensibly analyzing the relations among different celestial objects. The aim is to search celestial objects in different catalogs and to determine if they are the same object. Basically, cross-matching can be expressed as a join query statement. Since celestial catalogs usually contain billion of stars, the join operator must be carefully designed and optimized for efficiency. In this paper, we focus on fulfilling cross-matching by MapReduce based join operators. The challenge is how to optimize the join operators to satisfy specific requirements of cross-matching. Therefore, we propose an optimized method and investigate its efficiency by theoretical analysis and experiment. Our study shows that the method has a remarkable improvement to previous work, especially when the data is very large.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing the Join Operation on Hive to Accelerate Cross-Matching in Astronomy
Cross-matching in astronomy is a basic procedure for comprehensibly analyzing the relations among different celestial objects. The aim is to search celestial objects in different catalogs and to determine if they are the same object. Basically, cross-matching can be expressed as a join query statement. Since celestial catalogs usually contain billion of stars, the join operator must be carefully designed and optimized for efficiency. In this paper, we focus on fulfilling cross-matching by MapReduce based join operators. The challenge is how to optimize the join operators to satisfy specific requirements of cross-matching. Therefore, we propose an optimized method and investigate its efficiency by theoretical analysis and experiment. Our study shows that the method has a remarkable improvement to previous work, especially when the data is very large.