自相关的二次-逆估计

D. Thomson
{"title":"自相关的二次-逆估计","authors":"D. Thomson","doi":"10.1109/SSP.2018.8450755","DOIUrl":null,"url":null,"abstract":"We reconsider the classical problem of estimating the auto-correlation sequence of a stationary time series using quadratic-inverse spectrum estimates. This paper collapses the free-parameter expansion ambiguity of quadratic-inverse spectrum estimates and results in estimates of autocorrelations that have simultaneously low bias and variance.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic–Inverse Estimates Of Autocorrelation\",\"authors\":\"D. Thomson\",\"doi\":\"10.1109/SSP.2018.8450755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reconsider the classical problem of estimating the auto-correlation sequence of a stationary time series using quadratic-inverse spectrum estimates. This paper collapses the free-parameter expansion ambiguity of quadratic-inverse spectrum estimates and results in estimates of autocorrelations that have simultaneously low bias and variance.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重新考虑了用二次逆谱估计平稳时间序列的自相关序列的经典问题。本文消除了二次逆谱估计的自由参数展开模糊性,得到了同时具有低偏差和低方差的自相关估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic–Inverse Estimates Of Autocorrelation
We reconsider the classical problem of estimating the auto-correlation sequence of a stationary time series using quadratic-inverse spectrum estimates. This paper collapses the free-parameter expansion ambiguity of quadratic-inverse spectrum estimates and results in estimates of autocorrelations that have simultaneously low bias and variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信