Amjad Khan, S. Ali, A. Malik, Atif Anwer, Nur Afande Ali Hussain, F. Mériaudeau
{"title":"基于视觉反馈的自主水下机器人管道检测控制","authors":"Amjad Khan, S. Ali, A. Malik, Atif Anwer, Nur Afande Ali Hussain, F. Mériaudeau","doi":"10.1109/ROMA.2016.7847814","DOIUrl":null,"url":null,"abstract":"For everyday inspection jobs in offshore oil and gas industry, the human divers are being replaced by underwater vehicles. This paper proposes a visual feedback based control of an autonomous underwater vehicle for pipeline inspection. The hydrodynamic disturbances in water severely affect the movement of the vehicle resulting in performance degrading. The heading of the autonomous underwater vehicle under such disturbances is controlled using visual feedback to track the pipeline for inspection. The proposed method does not demand expensive position feedback devices such as underwater acoustic positioning system. By using built-in camera of the vehicle and few image processing techniques a simpler, easier and low-cost solution is proposed. The performance evaluation of the proposed technique on sample underwater images is also presented.","PeriodicalId":409977,"journal":{"name":"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Control of autonomous underwater vehicle based on visual feedback for pipeline inspection\",\"authors\":\"Amjad Khan, S. Ali, A. Malik, Atif Anwer, Nur Afande Ali Hussain, F. Mériaudeau\",\"doi\":\"10.1109/ROMA.2016.7847814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For everyday inspection jobs in offshore oil and gas industry, the human divers are being replaced by underwater vehicles. This paper proposes a visual feedback based control of an autonomous underwater vehicle for pipeline inspection. The hydrodynamic disturbances in water severely affect the movement of the vehicle resulting in performance degrading. The heading of the autonomous underwater vehicle under such disturbances is controlled using visual feedback to track the pipeline for inspection. The proposed method does not demand expensive position feedback devices such as underwater acoustic positioning system. By using built-in camera of the vehicle and few image processing techniques a simpler, easier and low-cost solution is proposed. The performance evaluation of the proposed technique on sample underwater images is also presented.\",\"PeriodicalId\":409977,\"journal\":{\"name\":\"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMA.2016.7847814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA.2016.7847814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of autonomous underwater vehicle based on visual feedback for pipeline inspection
For everyday inspection jobs in offshore oil and gas industry, the human divers are being replaced by underwater vehicles. This paper proposes a visual feedback based control of an autonomous underwater vehicle for pipeline inspection. The hydrodynamic disturbances in water severely affect the movement of the vehicle resulting in performance degrading. The heading of the autonomous underwater vehicle under such disturbances is controlled using visual feedback to track the pipeline for inspection. The proposed method does not demand expensive position feedback devices such as underwater acoustic positioning system. By using built-in camera of the vehicle and few image processing techniques a simpler, easier and low-cost solution is proposed. The performance evaluation of the proposed technique on sample underwater images is also presented.