基于牛顿法的动态误差控制训练算法

S. J. Huang, S. N. Koh, H. K. Tang
{"title":"基于牛顿法的动态误差控制训练算法","authors":"S. J. Huang, S. N. Koh, H. K. Tang","doi":"10.1109/IJCNN.1992.227085","DOIUrl":null,"url":null,"abstract":"The use of Newton's method with dynamic error control as a training algorithm for the backpropagation (BP) neural network is considered. Theoretically, it can be proved that Newton's method is convergent in the second-order while the most widely used steepest-descent method is convergent in the first-order. This suggests that Newton's method might be a faster algorithm for the BP network. The updating equations of the two methods are analyzed in detail to extract some important properties with reference to the error surface characteristics. The common benchmark XOR problem is used to compare the performance of the methods.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Training algorithm based on Newton's method with dynamic error control\",\"authors\":\"S. J. Huang, S. N. Koh, H. K. Tang\",\"doi\":\"10.1109/IJCNN.1992.227085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Newton's method with dynamic error control as a training algorithm for the backpropagation (BP) neural network is considered. Theoretically, it can be proved that Newton's method is convergent in the second-order while the most widely used steepest-descent method is convergent in the first-order. This suggests that Newton's method might be a faster algorithm for the BP network. The updating equations of the two methods are analyzed in detail to extract some important properties with reference to the error surface characteristics. The common benchmark XOR problem is used to compare the performance of the methods.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了用带有动态误差控制的牛顿方法作为反向传播神经网络的训练算法。从理论上可以证明牛顿法是二阶收敛的,而最广泛使用的最陡下降法是一阶收敛的。这表明牛顿方法对于BP网络来说可能是一个更快的算法。详细分析了两种方法的更新方程,并结合误差面特性提取了一些重要的特性。使用常见的基准异或问题来比较方法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training algorithm based on Newton's method with dynamic error control
The use of Newton's method with dynamic error control as a training algorithm for the backpropagation (BP) neural network is considered. Theoretically, it can be proved that Newton's method is convergent in the second-order while the most widely used steepest-descent method is convergent in the first-order. This suggests that Newton's method might be a faster algorithm for the BP network. The updating equations of the two methods are analyzed in detail to extract some important properties with reference to the error surface characteristics. The common benchmark XOR problem is used to compare the performance of the methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信