室内环境分布式人脸识别系统

Emre Sercan Aslan, Barış Bayram, G. Ince
{"title":"室内环境分布式人脸识别系统","authors":"Emre Sercan Aslan, Barış Bayram, G. Ince","doi":"10.1109/SIU.2017.7960393","DOIUrl":null,"url":null,"abstract":"Performance of a face recognition process changes depending on the distance between the camera and the person, light in the environment, pose, quality of image and the algorithm that is used for face recognition. An image collection system with a distributed architecture incorporating an embedded computer with a camera and a mobile robot equipped with a camera, a depth sensor and a microphone is developed. Face recognition using deep learning and artificial neural networks is applied on the gathered images. The performance of face recognition is investigated in terms of distance, size of the image set, activation mode, behaviour of the mobile robot and combination of the all components. The effectiveness of the system is verified using real world experiments.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed face recognition system for indoor environments\",\"authors\":\"Emre Sercan Aslan, Barış Bayram, G. Ince\",\"doi\":\"10.1109/SIU.2017.7960393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of a face recognition process changes depending on the distance between the camera and the person, light in the environment, pose, quality of image and the algorithm that is used for face recognition. An image collection system with a distributed architecture incorporating an embedded computer with a camera and a mobile robot equipped with a camera, a depth sensor and a microphone is developed. Face recognition using deep learning and artificial neural networks is applied on the gathered images. The performance of face recognition is investigated in terms of distance, size of the image set, activation mode, behaviour of the mobile robot and combination of the all components. The effectiveness of the system is verified using real world experiments.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸识别过程的性能取决于相机与人之间的距离、环境中的光线、姿势、图像质量以及用于人脸识别的算法。开发了一种分布式结构的图像采集系统,该系统由带有摄像头的嵌入式计算机和装有摄像头、深度传感器和麦克风的移动机器人组成。利用深度学习和人工神经网络对采集到的图像进行人脸识别。从距离、图像集的大小、激活模式、移动机器人的行为以及所有组件的组合等方面研究了人脸识别的性能。通过实际实验验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed face recognition system for indoor environments
Performance of a face recognition process changes depending on the distance between the camera and the person, light in the environment, pose, quality of image and the algorithm that is used for face recognition. An image collection system with a distributed architecture incorporating an embedded computer with a camera and a mobile robot equipped with a camera, a depth sensor and a microphone is developed. Face recognition using deep learning and artificial neural networks is applied on the gathered images. The performance of face recognition is investigated in terms of distance, size of the image set, activation mode, behaviour of the mobile robot and combination of the all components. The effectiveness of the system is verified using real world experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信