LFXtractor:用于生物医学文本长格式检测的文本分块

Min Song, Hongfang Liu
{"title":"LFXtractor:用于生物医学文本长格式检测的文本分块","authors":"Min Song, Hongfang Liu","doi":"10.1504/IJFIPM.2010.037148","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method to detect the corresponding long forms (LFs) of short forms (SFs) from biomedical text. The proposed method is differentiated from others as follows: it incorporates lexical analysis techniques into supervised learning for extracting abbreviations; it utilises text-chunking techniques to identify LFs of abbreviations; it significantly improves recall. The experimental results show that our approach outperforms the leading abbreviation algorithms, ExtractAbbrev, ALICE and Acrophile and a collocation-based approach at least by 4.8, 6.0, 9.0 and 6.0%, respectively, in both precision and recall on the Gold Standard Development corpus.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LFXtractor: Text chunking for long form detection from biomedical text\",\"authors\":\"Min Song, Hongfang Liu\",\"doi\":\"10.1504/IJFIPM.2010.037148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method to detect the corresponding long forms (LFs) of short forms (SFs) from biomedical text. The proposed method is differentiated from others as follows: it incorporates lexical analysis techniques into supervised learning for extracting abbreviations; it utilises text-chunking techniques to identify LFs of abbreviations; it significantly improves recall. The experimental results show that our approach outperforms the leading abbreviation algorithms, ExtractAbbrev, ALICE and Acrophile and a collocation-based approach at least by 4.8, 6.0, 9.0 and 6.0%, respectively, in both precision and recall on the Gold Standard Development corpus.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2010.037148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.037148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从生物医学文本中检测相应的短形式和长形式的新方法。该方法与其他方法的不同之处在于:它将词法分析技术纳入监督学习中以提取缩略语;它利用文本分块技术来识别缩略语的LFs;它能显著提高记忆力。实验结果表明,该方法在Gold Standard Development语料库上的精度和召回率分别比目前领先的缩写算法ExtractAbbrev、ALICE和Acrophile以及基于组合的方法分别提高4.8、6.0、9.0和6.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LFXtractor: Text chunking for long form detection from biomedical text
In this paper, we propose a novel method to detect the corresponding long forms (LFs) of short forms (SFs) from biomedical text. The proposed method is differentiated from others as follows: it incorporates lexical analysis techniques into supervised learning for extracting abbreviations; it utilises text-chunking techniques to identify LFs of abbreviations; it significantly improves recall. The experimental results show that our approach outperforms the leading abbreviation algorithms, ExtractAbbrev, ALICE and Acrophile and a collocation-based approach at least by 4.8, 6.0, 9.0 and 6.0%, respectively, in both precision and recall on the Gold Standard Development corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信