广义有界变差序列

R. Kantrowitz
{"title":"广义有界变差序列","authors":"R. Kantrowitz","doi":"10.12988/imf.2022.912317","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to offer a short, guided tour through the introduction and development of a class of sequence spaces that represent a discretization of spaces of functions of generalized bounded variation. The paths that we follow are motivated by, and parallel, some of those forged over the last 140 years in expanding Jordan’s original concept of functions of bounded variation on a compact interval. In addition, we devote attention to the issue of stability of the sequence spaces under coordinatewise multiplication and also endow them with a canonical norm.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequences of generalized bounded variation\",\"authors\":\"R. Kantrowitz\",\"doi\":\"10.12988/imf.2022.912317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to offer a short, guided tour through the introduction and development of a class of sequence spaces that represent a discretization of spaces of functions of generalized bounded variation. The paths that we follow are motivated by, and parallel, some of those forged over the last 140 years in expanding Jordan’s original concept of functions of bounded variation on a compact interval. In addition, we devote attention to the issue of stability of the sequence spaces under coordinatewise multiplication and also endow them with a canonical norm.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2022.912317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2022.912317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是通过介绍和发展一类表示广义有界变分函数空间离散化的序列空间,提供一个简短的导览。我们所遵循的道路是由过去140年来在扩展Jordan在紧区间上的有界变分函数的原始概念中形成的,并且是平行的。此外,我们还研究了序列空间在坐标乘法下的稳定性问题,并赋予它们一个正则范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequences of generalized bounded variation
The purpose of this article is to offer a short, guided tour through the introduction and development of a class of sequence spaces that represent a discretization of spaces of functions of generalized bounded variation. The paths that we follow are motivated by, and parallel, some of those forged over the last 140 years in expanding Jordan’s original concept of functions of bounded variation on a compact interval. In addition, we devote attention to the issue of stability of the sequence spaces under coordinatewise multiplication and also endow them with a canonical norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信