基于VaR与CVaR的股票风险实证分析 Empirical Analysis of Stock Risk Based on VaR and CVaR

李子赫, 张金平, 冯兰兰
{"title":"基于VaR与CVaR的股票风险实证分析 Empirical Analysis of Stock Risk Based on VaR and CVaR","authors":"李子赫, 张金平, 冯兰兰","doi":"10.12677/FIN.2017.75026","DOIUrl":null,"url":null,"abstract":"VaR (在险价值)和CVaR (条件在险价值)是常用的金融产品风险度量工具。本文考虑沪深300、中证500和不同行业的12只股票最近两年(2014.10~2016.9)的历史数据,首先用非参数估计方法计算了相应的VaR和CVaR值,然后结合Bootstrap抽样数据,重新估计了相应股票的VaR和CVaR值,根据似然比检验得出结论:Bootstrap方法可以提高VaR和CVaR的估计的精度,更加有效地衡量股票的风险。 VaR and CVaR are used to measure risk of financial products. In this paper, based on the historical data of recent two years (Oct. 2014~Sep. 2016) of the CSI300, CSI500 and 12 stocks from different industries, at first we compute VaR and CVaR by using nonparametric estimation method. Then, by using Bootstrap method, we recalculate the values of VaR and CVaR. According to the likelihood ratio test, Bootstrap method can improve the estimation precision of VaR and CVaR and then measure the risk more effectively.","PeriodicalId":251115,"journal":{"name":"The Finance","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"基于VaR与CVaR的股票风险实证分析 Empirical Analysis of Stock Risk Based on VaR and CVaR\",\"authors\":\"李子赫, 张金平, 冯兰兰\",\"doi\":\"10.12677/FIN.2017.75026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VaR (在险价值)和CVaR (条件在险价值)是常用的金融产品风险度量工具。本文考虑沪深300、中证500和不同行业的12只股票最近两年(2014.10~2016.9)的历史数据,首先用非参数估计方法计算了相应的VaR和CVaR值,然后结合Bootstrap抽样数据,重新估计了相应股票的VaR和CVaR值,根据似然比检验得出结论:Bootstrap方法可以提高VaR和CVaR的估计的精度,更加有效地衡量股票的风险。 VaR and CVaR are used to measure risk of financial products. In this paper, based on the historical data of recent two years (Oct. 2014~Sep. 2016) of the CSI300, CSI500 and 12 stocks from different industries, at first we compute VaR and CVaR by using nonparametric estimation method. Then, by using Bootstrap method, we recalculate the values of VaR and CVaR. According to the likelihood ratio test, Bootstrap method can improve the estimation precision of VaR and CVaR and then measure the risk more effectively.\",\"PeriodicalId\":251115,\"journal\":{\"name\":\"The Finance\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/FIN.2017.75026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/FIN.2017.75026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

VaR (在险价值)和CVaR (条件在险价值)是常用的金融产品风险度量工具。本文考虑沪深300、中证500和不同行业的12只股票最近两年(2014.10~2016.9)的历史数据,首先用非参数估计方法计算了相应的VaR和CVaR值,然后结合Bootstrap抽样数据,重新估计了相应股票的VaR和CVaR值,根据似然比检验得出结论:Bootstrap方法可以提高VaR和CVaR的估计的精度,更加有效地衡量股票的风险。 VaR and CVaR are used to measure risk of financial products. In this paper, based on the historical data of recent two years (Oct. 2014~Sep. 2016) of the CSI300, CSI500 and 12 stocks from different industries, at first we compute VaR and CVaR by using nonparametric estimation method. Then, by using Bootstrap method, we recalculate the values of VaR and CVaR. According to the likelihood ratio test, Bootstrap method can improve the estimation precision of VaR and CVaR and then measure the risk more effectively.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
基于VaR与CVaR的股票风险实证分析 Empirical Analysis of Stock Risk Based on VaR and CVaR
VaR (在险价值)和CVaR (条件在险价值)是常用的金融产品风险度量工具。本文考虑沪深300、中证500和不同行业的12只股票最近两年(2014.10~2016.9)的历史数据,首先用非参数估计方法计算了相应的VaR和CVaR值,然后结合Bootstrap抽样数据,重新估计了相应股票的VaR和CVaR值,根据似然比检验得出结论:Bootstrap方法可以提高VaR和CVaR的估计的精度,更加有效地衡量股票的风险。 VaR and CVaR are used to measure risk of financial products. In this paper, based on the historical data of recent two years (Oct. 2014~Sep. 2016) of the CSI300, CSI500 and 12 stocks from different industries, at first we compute VaR and CVaR by using nonparametric estimation method. Then, by using Bootstrap method, we recalculate the values of VaR and CVaR. According to the likelihood ratio test, Bootstrap method can improve the estimation precision of VaR and CVaR and then measure the risk more effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信