{"title":"基于马尔可夫模型、神经模糊模型和条件异方差模型的孟加拉汇率日序列预测能力","authors":"S. Banik, M. Anwer, A. Khan","doi":"10.1109/ICCIT.2009.5407119","DOIUrl":null,"url":null,"abstract":"Forecasting exchange rate is very important for many international agents e.g. investors, money managers, investment banks, funds makers and others. We forecasted the daily Bangladeshi exchange rate series for the period of January 1992 to March 2009 using popular non-linear forecasting models, namely Markov switching autoregressive model, fuzzy extension of artificial neural network model (ANFIS) and generalized autoregressive conditional heteroscedastic model. Our target is to investigate whether selected models can serve as useful forecasting models to find volatile and non-linear behaviors of the considered series. By most commonly used statistical measures: mean absolute percentage error, root mean square error and coefficient of determination, we found that ANFIS is a superior predictor than other two selected predictors. We believe findings of this paper will be helpful to make a wide range of policies for multinational companies who are involved with various international business activities.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predictive power of the daily Bangladeshi exchange rate series based on Markov model, neuro fuzzy model and conditional heteroskedastic model\",\"authors\":\"S. Banik, M. Anwer, A. Khan\",\"doi\":\"10.1109/ICCIT.2009.5407119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting exchange rate is very important for many international agents e.g. investors, money managers, investment banks, funds makers and others. We forecasted the daily Bangladeshi exchange rate series for the period of January 1992 to March 2009 using popular non-linear forecasting models, namely Markov switching autoregressive model, fuzzy extension of artificial neural network model (ANFIS) and generalized autoregressive conditional heteroscedastic model. Our target is to investigate whether selected models can serve as useful forecasting models to find volatile and non-linear behaviors of the considered series. By most commonly used statistical measures: mean absolute percentage error, root mean square error and coefficient of determination, we found that ANFIS is a superior predictor than other two selected predictors. We believe findings of this paper will be helpful to make a wide range of policies for multinational companies who are involved with various international business activities.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive power of the daily Bangladeshi exchange rate series based on Markov model, neuro fuzzy model and conditional heteroskedastic model
Forecasting exchange rate is very important for many international agents e.g. investors, money managers, investment banks, funds makers and others. We forecasted the daily Bangladeshi exchange rate series for the period of January 1992 to March 2009 using popular non-linear forecasting models, namely Markov switching autoregressive model, fuzzy extension of artificial neural network model (ANFIS) and generalized autoregressive conditional heteroscedastic model. Our target is to investigate whether selected models can serve as useful forecasting models to find volatile and non-linear behaviors of the considered series. By most commonly used statistical measures: mean absolute percentage error, root mean square error and coefficient of determination, we found that ANFIS is a superior predictor than other two selected predictors. We believe findings of this paper will be helpful to make a wide range of policies for multinational companies who are involved with various international business activities.