数据驱动的FS-SKPLS监测方法及其在废水处理过程中的应用

Zelin Ren, Jianxing Liu, Zhiyong She, Chengming Yang, Han Yu
{"title":"数据驱动的FS-SKPLS监测方法及其在废水处理过程中的应用","authors":"Zelin Ren, Jianxing Liu, Zhiyong She, Chengming Yang, Han Yu","doi":"10.1109/ICIT.2016.7474880","DOIUrl":null,"url":null,"abstract":"In this paper, a data-driven scheme of spherical kernel partial least squares based on feature subspace (FS-SKPLS) will be applied to the wastewater treatment process (WWTP). First, select appropriate data variables. Utilize the benchmark simulation model no. 1 (BSM1) to obtain large amounts of training and testing data needed in the process monitoring. Then, introduce the feather subspace method into spherical kernel partial least squares (SKPLS) to get FS-SKPLS approach. Finally, adopt FS-SKPLS to achieve the aims of the off-line modeling and the on-line process monitoring.","PeriodicalId":116715,"journal":{"name":"2016 IEEE International Conference on Industrial Technology (ICIT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-driven approach of FS-SKPLS monitoring with application to wastewater treatment process\",\"authors\":\"Zelin Ren, Jianxing Liu, Zhiyong She, Chengming Yang, Han Yu\",\"doi\":\"10.1109/ICIT.2016.7474880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a data-driven scheme of spherical kernel partial least squares based on feature subspace (FS-SKPLS) will be applied to the wastewater treatment process (WWTP). First, select appropriate data variables. Utilize the benchmark simulation model no. 1 (BSM1) to obtain large amounts of training and testing data needed in the process monitoring. Then, introduce the feather subspace method into spherical kernel partial least squares (SKPLS) to get FS-SKPLS approach. Finally, adopt FS-SKPLS to achieve the aims of the off-line modeling and the on-line process monitoring.\",\"PeriodicalId\":116715,\"journal\":{\"name\":\"2016 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2016.7474880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2016.7474880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将基于特征子空间的球核偏最小二乘数据驱动方案(FS-SKPLS)应用于污水处理过程。首先,选择合适的数据变量。利用基准模拟模型。1 (BSM1)获取过程监控所需的大量培训和测试数据。然后,将羽毛子空间方法引入到球核偏最小二乘(SKPLS)中,得到FS-SKPLS方法。最后,采用FS-SKPLS实现了离线建模和在线过程监控的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven approach of FS-SKPLS monitoring with application to wastewater treatment process
In this paper, a data-driven scheme of spherical kernel partial least squares based on feature subspace (FS-SKPLS) will be applied to the wastewater treatment process (WWTP). First, select appropriate data variables. Utilize the benchmark simulation model no. 1 (BSM1) to obtain large amounts of training and testing data needed in the process monitoring. Then, introduce the feather subspace method into spherical kernel partial least squares (SKPLS) to get FS-SKPLS approach. Finally, adopt FS-SKPLS to achieve the aims of the off-line modeling and the on-line process monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信