{"title":"利用机器学习技术增强云中医学图像数据的安全性","authors":"Chandra Shekhar Tiwari, Vijay Kumar Jha","doi":"10.5815/ijigsp.2022.04.02","DOIUrl":null,"url":null,"abstract":"To prevent medical data leakage to third parties, algorithm developers have enhanced and modified existing models and tightened the cloud security through complex processes. This research utilizes PlayFair and K-Means clustering algorithm as double-level encryption/ decryption technique with ArnoldCat maps towards securing the medical images in cloud. K-Means is used for segmenting images into pixels and auto-encoders to remove noise (de-noising);the Random Forest regressor, tree-method based ensemble model is used for classification. The study obtained CT scan-images as datasets from ‘Kaggle’ and classifies the images into ‘Non-Covid’ and ‘Covid’ categories. The software utilized is Jupyter-Notebook, in Python. PSNR with MSE evaluation metrics is done using Python. Through testing-and-training datasets, lower MSE score (‘0’) and higher PSNR score (60%) were obtained, stating that, the developed decryption/ encryption model is a good fit that enhances cloud security to preserve digital medical images. © 2022 MECS.","PeriodicalId":378340,"journal":{"name":"International Journal of Image, Graphics and Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing Security of Medical Image Data in the Cloud Using Machine Learning Technique\",\"authors\":\"Chandra Shekhar Tiwari, Vijay Kumar Jha\",\"doi\":\"10.5815/ijigsp.2022.04.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To prevent medical data leakage to third parties, algorithm developers have enhanced and modified existing models and tightened the cloud security through complex processes. This research utilizes PlayFair and K-Means clustering algorithm as double-level encryption/ decryption technique with ArnoldCat maps towards securing the medical images in cloud. K-Means is used for segmenting images into pixels and auto-encoders to remove noise (de-noising);the Random Forest regressor, tree-method based ensemble model is used for classification. The study obtained CT scan-images as datasets from ‘Kaggle’ and classifies the images into ‘Non-Covid’ and ‘Covid’ categories. The software utilized is Jupyter-Notebook, in Python. PSNR with MSE evaluation metrics is done using Python. Through testing-and-training datasets, lower MSE score (‘0’) and higher PSNR score (60%) were obtained, stating that, the developed decryption/ encryption model is a good fit that enhances cloud security to preserve digital medical images. © 2022 MECS.\",\"PeriodicalId\":378340,\"journal\":{\"name\":\"International Journal of Image, Graphics and Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image, Graphics and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijigsp.2022.04.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image, Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijigsp.2022.04.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3