{"title":"基于临床数据结构化图的CR图像的疾病预后半监督分类","authors":"Jun Bai, Bingjun Li, S. Nabavi","doi":"10.1145/3535508.3545548","DOIUrl":null,"url":null,"abstract":"Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-supervised classification of disease prognosis using CR images with clinical data structured graph\",\"authors\":\"Jun Bai, Bingjun Li, S. Nabavi\",\"doi\":\"10.1145/3535508.3545548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised classification of disease prognosis using CR images with clinical data structured graph
Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.