基于临床数据结构化图的CR图像的疾病预后半监督分类

Jun Bai, Bingjun Li, S. Nabavi
{"title":"基于临床数据结构化图的CR图像的疾病预后半监督分类","authors":"Jun Bai, Bingjun Li, S. Nabavi","doi":"10.1145/3535508.3545548","DOIUrl":null,"url":null,"abstract":"Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-supervised classification of disease prognosis using CR images with clinical data structured graph\",\"authors\":\"Jun Bai, Bingjun Li, S. Nabavi\",\"doi\":\"10.1145/3535508.3545548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

快速发展的全球互联互通和城市化增加了疾病在全球传播的风险。全球范围内的SARS-COV-2疾病导致卫生保健系统紧张,特别是重症监护病房。因此,预后患者需要重症监护病房是入院阶段的优先事项,以有效地分配资源。在住院早期,经常收集患者胸片和临床资料进行诊断。因此,我们提出了一种嵌入计算机放射学检查特征的临床数据结构化图马尔可夫神经网络(CGMNN)来预测COVID患者的重症监护病房需求。该研究利用了1342名患者的胸部计算机x线摄影和来自公共数据集的临床数据。所提出的CGMNN优于基线模型,精度为0.82,灵敏度为0.82,精度为0.81,F1分数为0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised classification of disease prognosis using CR images with clinical data structured graph
Fast growing global connectivity and urbanisation increases the risk of spreading worldwide disease. The worldwide SARS-COV-2 disease causes healthcare system strained, especially for the intensive care units. Therefore, prognostic of patients' need for intensive care units is priority at the hospital admission stage for efficient resource allocation. In the early hospitalization, patient chest radiography and clinical data are always collected to diagnose. Hence, we proposed a clinical data structured graph Markov neural network embedding with computed radiography exam features (CGMNN) to predict the intensive care units demand for COVID patients. The study utilized 1,342 patients' chest computed radiography with clinical data from a public dataset. The proposed CGMNN outperforms baseline models with an accuracy of 0.82, a sensitivity of 0.82, a precision of 0.81, and an F1 score of 0.76.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信