基于深度句子表示和局部特征表示的混合问答选择模型

Dongge Tang, Wenge Rong, Libin Shi, Haodong Yang, Zhang Xiong
{"title":"基于深度句子表示和局部特征表示的混合问答选择模型","authors":"Dongge Tang, Wenge Rong, Libin Shi, Haodong Yang, Zhang Xiong","doi":"10.1109/CYBERC.2018.00057","DOIUrl":null,"url":null,"abstract":"Answer selection is a one of the critical tasks in natural lan-guage processing area and it is helpful in many practical applications. To better tackle this problem, the first challenge is to effectively extract the sentence information. In this research, we propose an advanced Re-Read-CNN model which can learn a deep sentence representation and meanwhile combine the local feature representation. The experiment results on commonly used datasets have shown its effectiveness and potential for answer selection.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid of Deep Sentence Representation and Local Feature Representation Model for Question Answer Selection\",\"authors\":\"Dongge Tang, Wenge Rong, Libin Shi, Haodong Yang, Zhang Xiong\",\"doi\":\"10.1109/CYBERC.2018.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Answer selection is a one of the critical tasks in natural lan-guage processing area and it is helpful in many practical applications. To better tackle this problem, the first challenge is to effectively extract the sentence information. In this research, we propose an advanced Re-Read-CNN model which can learn a deep sentence representation and meanwhile combine the local feature representation. The experiment results on commonly used datasets have shown its effectiveness and potential for answer selection.\",\"PeriodicalId\":282903,\"journal\":{\"name\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2018.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

答案选择是自然语言处理领域的关键任务之一,具有广泛的应用价值。为了更好地解决这个问题,第一个挑战是有效地提取句子信息。在本研究中,我们提出了一种先进的Re-Read-CNN模型,该模型可以学习深度句子表示,同时结合局部特征表示。在常用数据集上的实验结果表明了该方法在答案选择方面的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid of Deep Sentence Representation and Local Feature Representation Model for Question Answer Selection
Answer selection is a one of the critical tasks in natural lan-guage processing area and it is helpful in many practical applications. To better tackle this problem, the first challenge is to effectively extract the sentence information. In this research, we propose an advanced Re-Read-CNN model which can learn a deep sentence representation and meanwhile combine the local feature representation. The experiment results on commonly used datasets have shown its effectiveness and potential for answer selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信