{"title":"基于接触单元的海底管道铺设建模","authors":"Cora E. Martínez, Raúl Goncalves","doi":"10.1115/1.1555117","DOIUrl":null,"url":null,"abstract":"\n A new finite element formulation to analyze stresses and displacements in submarine pipelines during laying operations is presented in this paper. The method is based on the corotational formulation using Bernoulli non-linear beam elements to model the large displacements and rotations of the pipeline. The penalty method is used with spring-contact elements to accurately represent the actual boundary conditions. During the lay barge installation, the pipe rolls over the barge ramp and slides over the stinger before reaching the sea floor. The barge stinger is a ramp over floating supports that holds the pipeline in such a way that the pipe adopts an S-curve during the laying process. Since contact elements allow the pipeline to separate from the stinger at those points where the contact is lost, introducing these elements into the analysis makes it possible to accurately model the actual boundary conditions on the stinger. In addition, the use of contact elements allows the pipe to reach the sea floor at all those points, which naturally require this condition without imposing any displacement boundary condition during the convergence process. A real laying case of an oil transportation submarine pipeline is presented at the end of the paper to validate the results obtained with the developed formulation. A comparison with a finite element formulation introduced by the authors in a previous paper is also presented in order to verify the accuracy and computational effectiveness of the proposed method.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Laying Modeling of Submarine Pipelines Using Contact Elements Into a Corotational Formulation\",\"authors\":\"Cora E. Martínez, Raúl Goncalves\",\"doi\":\"10.1115/1.1555117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new finite element formulation to analyze stresses and displacements in submarine pipelines during laying operations is presented in this paper. The method is based on the corotational formulation using Bernoulli non-linear beam elements to model the large displacements and rotations of the pipeline. The penalty method is used with spring-contact elements to accurately represent the actual boundary conditions. During the lay barge installation, the pipe rolls over the barge ramp and slides over the stinger before reaching the sea floor. The barge stinger is a ramp over floating supports that holds the pipeline in such a way that the pipe adopts an S-curve during the laying process. Since contact elements allow the pipeline to separate from the stinger at those points where the contact is lost, introducing these elements into the analysis makes it possible to accurately model the actual boundary conditions on the stinger. In addition, the use of contact elements allows the pipe to reach the sea floor at all those points, which naturally require this condition without imposing any displacement boundary condition during the convergence process. A real laying case of an oil transportation submarine pipeline is presented at the end of the paper to validate the results obtained with the developed formulation. A comparison with a finite element formulation introduced by the authors in a previous paper is also presented in order to verify the accuracy and computational effectiveness of the proposed method.\",\"PeriodicalId\":270413,\"journal\":{\"name\":\"Recent Advances in Solids and Structures\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.1555117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.1555117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laying Modeling of Submarine Pipelines Using Contact Elements Into a Corotational Formulation
A new finite element formulation to analyze stresses and displacements in submarine pipelines during laying operations is presented in this paper. The method is based on the corotational formulation using Bernoulli non-linear beam elements to model the large displacements and rotations of the pipeline. The penalty method is used with spring-contact elements to accurately represent the actual boundary conditions. During the lay barge installation, the pipe rolls over the barge ramp and slides over the stinger before reaching the sea floor. The barge stinger is a ramp over floating supports that holds the pipeline in such a way that the pipe adopts an S-curve during the laying process. Since contact elements allow the pipeline to separate from the stinger at those points where the contact is lost, introducing these elements into the analysis makes it possible to accurately model the actual boundary conditions on the stinger. In addition, the use of contact elements allows the pipe to reach the sea floor at all those points, which naturally require this condition without imposing any displacement boundary condition during the convergence process. A real laying case of an oil transportation submarine pipeline is presented at the end of the paper to validate the results obtained with the developed formulation. A comparison with a finite element formulation introduced by the authors in a previous paper is also presented in order to verify the accuracy and computational effectiveness of the proposed method.