复制数据库私有非线性计算能力研究

Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer
{"title":"复制数据库私有非线性计算能力研究","authors":"Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer","doi":"10.1109/ITW44776.2019.8989267","DOIUrl":null,"url":null,"abstract":"We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Capacity of Private Nonlinear Computation for Replicated Databases\",\"authors\":\"Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer\",\"doi\":\"10.1109/ITW44776.2019.8989267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究分布式存储系统中的私有计算问题。在这种设置中,用户希望计算跨n个非串通数据库复制的f个消息的函数,同时不向数据库透露有关所需函数的任何信息。对于非线性计算的场景,我们提供了一个信息理论精确的可实现PC率,即最小期望信息量与下载信息总量的比值。对于较大的消息大小,当候选函数是f个独立消息和它们的一个任意非线性函数时,速率等于PC容量,即最大可实现的PC速率。当消息数量增加时,PC速率接近PC容量的外部边界。作为一种特殊情况,我们考虑了私有单项式计算(PMC),并将可实现的PMC速率与有限数量消息的外部边界进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Capacity of Private Nonlinear Computation for Replicated Databases
We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信