脑卒中后康复治疗中社交辅助机器人的个性化互动与矫正反馈研究

Min Hun Lee, D. Siewiorek, A. Smailagic, A. Bernardino, S. Badia
{"title":"脑卒中后康复治疗中社交辅助机器人的个性化互动与矫正反馈研究","authors":"Min Hun Lee, D. Siewiorek, A. Smailagic, A. Bernardino, S. Badia","doi":"10.1109/RO-MAN47096.2020.9223462","DOIUrl":null,"url":null,"abstract":"A robotic exercise coaching system requires the capability of automatically assessing a patient’s exercise to in-teract with a patient and generate corrective feedback. However, even if patients have various physical conditions, most prior work on robotic exercise coaching systems has utilized generic, pre-defined feedback.This paper presents an interactive approach that combines machine learning and rule-based models to automatically assess a patient’s rehabilitation exercise and tunes with patient’s data to generate personalized corrective feedback. To generate feedback when an erroneous motion occurs, our approach applies an ensemble voting method that leverages predictions from multiple frames for frame-level assessment. According to the evaluation with the dataset of three stroke rehabilitation exercises from 15 post-stroke subjects, our interactive approach with an ensemble voting method supports more accurate frame-level assessment (p < 0.01), but also can be tuned with held-out user’s unaffected motions to significantly improve the performance of assessment from 0.7447 to 0.8235 average F1-scores over all exercises (p < 0.01). This paper discusses the value of an interactive approach with an ensemble voting method for personalized interaction of a robotic exercise coaching system.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Towards Personalized Interaction and Corrective Feedback of a Socially Assistive Robot for Post-Stroke Rehabilitation Therapy\",\"authors\":\"Min Hun Lee, D. Siewiorek, A. Smailagic, A. Bernardino, S. Badia\",\"doi\":\"10.1109/RO-MAN47096.2020.9223462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robotic exercise coaching system requires the capability of automatically assessing a patient’s exercise to in-teract with a patient and generate corrective feedback. However, even if patients have various physical conditions, most prior work on robotic exercise coaching systems has utilized generic, pre-defined feedback.This paper presents an interactive approach that combines machine learning and rule-based models to automatically assess a patient’s rehabilitation exercise and tunes with patient’s data to generate personalized corrective feedback. To generate feedback when an erroneous motion occurs, our approach applies an ensemble voting method that leverages predictions from multiple frames for frame-level assessment. According to the evaluation with the dataset of three stroke rehabilitation exercises from 15 post-stroke subjects, our interactive approach with an ensemble voting method supports more accurate frame-level assessment (p < 0.01), but also can be tuned with held-out user’s unaffected motions to significantly improve the performance of assessment from 0.7447 to 0.8235 average F1-scores over all exercises (p < 0.01). This paper discusses the value of an interactive approach with an ensemble voting method for personalized interaction of a robotic exercise coaching system.\",\"PeriodicalId\":383722,\"journal\":{\"name\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN47096.2020.9223462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

机器人运动指导系统需要能够自动评估患者的运动,与患者互动并产生纠正反馈。然而,即使患者有各种各样的身体状况,大多数先前的机器人运动指导系统的工作都使用了通用的、预定义的反馈。本文提出了一种结合机器学习和基于规则的模型的交互式方法,以自动评估患者的康复锻炼,并根据患者的数据进行调整,以生成个性化的纠正反馈。为了在发生错误动作时生成反馈,我们的方法应用了一种集成投票方法,该方法利用来自多帧的预测进行帧级评估。通过对15名卒中后受试者的三种卒中康复训练数据集的评估,我们的交互方法与集成投票方法支持更准确的框架水平评估(p < 0.01),但也可以调整用户未受影响的动作,显著提高评估的性能,从0.7447到0.8235,所有练习的平均f1得分(p < 0.01)。本文讨论了集成投票方法在机器人运动指导系统个性化交互中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Personalized Interaction and Corrective Feedback of a Socially Assistive Robot for Post-Stroke Rehabilitation Therapy
A robotic exercise coaching system requires the capability of automatically assessing a patient’s exercise to in-teract with a patient and generate corrective feedback. However, even if patients have various physical conditions, most prior work on robotic exercise coaching systems has utilized generic, pre-defined feedback.This paper presents an interactive approach that combines machine learning and rule-based models to automatically assess a patient’s rehabilitation exercise and tunes with patient’s data to generate personalized corrective feedback. To generate feedback when an erroneous motion occurs, our approach applies an ensemble voting method that leverages predictions from multiple frames for frame-level assessment. According to the evaluation with the dataset of three stroke rehabilitation exercises from 15 post-stroke subjects, our interactive approach with an ensemble voting method supports more accurate frame-level assessment (p < 0.01), but also can be tuned with held-out user’s unaffected motions to significantly improve the performance of assessment from 0.7447 to 0.8235 average F1-scores over all exercises (p < 0.01). This paper discusses the value of an interactive approach with an ensemble voting method for personalized interaction of a robotic exercise coaching system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信