光学薄膜设计的鲁棒进化算法

Jinn-Moon Yang, C. Kao
{"title":"光学薄膜设计的鲁棒进化算法","authors":"Jinn-Moon Yang, C. Kao","doi":"10.1109/CEC.2000.870751","DOIUrl":null,"url":null,"abstract":"This paper presents an evolutionary approach, called the family competition evolutionary algorithm (FCEA), for optical thin film design. The proposed approach, based on family competition and multiple adaptive rules, integrates decreasing-based Gaussian mutation and two self-adaptive mutations to balance the exploitation and exploration. It is implemented and applied to two coating systems. Numerical results indicate that the proposed approach is very robust for optical coatings.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A robust evolutionary algorithm for optical thin-film designs\",\"authors\":\"Jinn-Moon Yang, C. Kao\",\"doi\":\"10.1109/CEC.2000.870751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evolutionary approach, called the family competition evolutionary algorithm (FCEA), for optical thin film design. The proposed approach, based on family competition and multiple adaptive rules, integrates decreasing-based Gaussian mutation and two self-adaptive mutations to balance the exploitation and exploration. It is implemented and applied to two coating systems. Numerical results indicate that the proposed approach is very robust for optical coatings.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种光学薄膜设计的进化方法——家族竞争进化算法(FCEA)。该方法基于家族竞争和多自适应规则,将基于递减的高斯突变和两个自适应突变相结合,以平衡开发和探索。它被实现并应用于两种涂层系统。数值结果表明,该方法对光学涂层具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust evolutionary algorithm for optical thin-film designs
This paper presents an evolutionary approach, called the family competition evolutionary algorithm (FCEA), for optical thin film design. The proposed approach, based on family competition and multiple adaptive rules, integrates decreasing-based Gaussian mutation and two self-adaptive mutations to balance the exploitation and exploration. It is implemented and applied to two coating systems. Numerical results indicate that the proposed approach is very robust for optical coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信