MPEG-DASH用户对MOOC视频体验质量的提升

D. Sebai, Emna Mani
{"title":"MPEG-DASH用户对MOOC视频体验质量的提升","authors":"D. Sebai, Emna Mani","doi":"10.1109/ISM.2020.00036","DOIUrl":null,"url":null,"abstract":"The Dynamic Adaptive Streaming over HTTP (MPEG-DASH) ensures online videos display of good quality and without interruption. It provides an adequate streaming for each display device and network transmission. This can be very useful for the specific field of Massive Open Online Courses (MOOCs) where learners profit from an exceptional visual experience that improves their commitment level and eases the course assimilation. These MPEG-DASH assets can become more and more advantageous if a good choice of its parameters is made. Being a recent branch, the MPEG-DASH adaptive diffusion presents a research field where the efforts are still limited, even more for MOOC videos. Most of the work published in this sense focus on the Quality of Service (QoS) and the technical specifications of the network transmission. In this paper, we aim to consider the quality of the streamed content that directly impacts the learners quality of Experience (QoE). For this, we develop a content-aware dataset that includes several dashified MOOC videos. These latter are then exploited to study the most appropriate bitrates and segment durations for each type of MOOC videos.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MPEG-DASH users quality of experience enhancement for MOOC videos\",\"authors\":\"D. Sebai, Emna Mani\",\"doi\":\"10.1109/ISM.2020.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dynamic Adaptive Streaming over HTTP (MPEG-DASH) ensures online videos display of good quality and without interruption. It provides an adequate streaming for each display device and network transmission. This can be very useful for the specific field of Massive Open Online Courses (MOOCs) where learners profit from an exceptional visual experience that improves their commitment level and eases the course assimilation. These MPEG-DASH assets can become more and more advantageous if a good choice of its parameters is made. Being a recent branch, the MPEG-DASH adaptive diffusion presents a research field where the efforts are still limited, even more for MOOC videos. Most of the work published in this sense focus on the Quality of Service (QoS) and the technical specifications of the network transmission. In this paper, we aim to consider the quality of the streamed content that directly impacts the learners quality of Experience (QoE). For this, we develop a content-aware dataset that includes several dashified MOOC videos. These latter are then exploited to study the most appropriate bitrates and segment durations for each type of MOOC videos.\",\"PeriodicalId\":120972,\"journal\":{\"name\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2020.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于HTTP的动态自适应流(MPEG-DASH)保证了在线视频的高质量和不间断显示。它为每个显示设备和网络传输提供了足够的流。这对于大规模在线开放课程(MOOCs)的特定领域非常有用,学习者可以从一种特殊的视觉体验中获益,这种体验可以提高他们的投入程度,并简化课程同化。如果选择合适的参数,这些MPEG-DASH资产将变得越来越有优势。作为最近的一个分支,MPEG-DASH自适应扩散提出了一个研究领域的努力仍然有限,甚至更多的MOOC视频。在这个意义上发表的大多数工作都集中在服务质量(QoS)和网络传输的技术规范上。在本文中,我们的目标是考虑直接影响学习者体验质量(QoE)的流媒体内容的质量。为此,我们开发了一个内容感知数据集,其中包括几个花哨的MOOC视频。然后利用这些后者来研究每种MOOC视频的最合适的比特率和分段持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPEG-DASH users quality of experience enhancement for MOOC videos
The Dynamic Adaptive Streaming over HTTP (MPEG-DASH) ensures online videos display of good quality and without interruption. It provides an adequate streaming for each display device and network transmission. This can be very useful for the specific field of Massive Open Online Courses (MOOCs) where learners profit from an exceptional visual experience that improves their commitment level and eases the course assimilation. These MPEG-DASH assets can become more and more advantageous if a good choice of its parameters is made. Being a recent branch, the MPEG-DASH adaptive diffusion presents a research field where the efforts are still limited, even more for MOOC videos. Most of the work published in this sense focus on the Quality of Service (QoS) and the technical specifications of the network transmission. In this paper, we aim to consider the quality of the streamed content that directly impacts the learners quality of Experience (QoE). For this, we develop a content-aware dataset that includes several dashified MOOC videos. These latter are then exploited to study the most appropriate bitrates and segment durations for each type of MOOC videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信