膝关节骨性关节炎医学图像的高效图切分割

S. Ababneh, M. Gurcan
{"title":"膝关节骨性关节炎医学图像的高效图切分割","authors":"S. Ababneh, M. Gurcan","doi":"10.1109/EIT.2010.5612191","DOIUrl":null,"url":null,"abstract":"The segmentation of bones in the knee region is one of the first essential steps to perform further analysis, classification and osteoarthritis imaging biomarkers discovery. In this paper, an efficient graph-cut based segmentation algorithm is proposed. One of the challenges in current graph-cut schemes is properly distinguishing between regions of interest (ROI) and background regions with features very similar to those of the ROI. Since obtaining a very discriminative cost function is not always feasible, many algorithms require user interaction to provide an extensive number of seed points. In this paper, a new approach is proposed which uses efficient content-based features to achieve segmentation without the need for any user interaction. Experimental results on actual knee MR images demonstrate the effectiveness of the proposed scheme with an average accuracy of 95% using the Zijdenbos similarity index.","PeriodicalId":305049,"journal":{"name":"2010 IEEE International Conference on Electro/Information Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An efficient graph-cut segmentation for knee bone osteoarthritis medical images\",\"authors\":\"S. Ababneh, M. Gurcan\",\"doi\":\"10.1109/EIT.2010.5612191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation of bones in the knee region is one of the first essential steps to perform further analysis, classification and osteoarthritis imaging biomarkers discovery. In this paper, an efficient graph-cut based segmentation algorithm is proposed. One of the challenges in current graph-cut schemes is properly distinguishing between regions of interest (ROI) and background regions with features very similar to those of the ROI. Since obtaining a very discriminative cost function is not always feasible, many algorithms require user interaction to provide an extensive number of seed points. In this paper, a new approach is proposed which uses efficient content-based features to achieve segmentation without the need for any user interaction. Experimental results on actual knee MR images demonstrate the effectiveness of the proposed scheme with an average accuracy of 95% using the Zijdenbos similarity index.\",\"PeriodicalId\":305049,\"journal\":{\"name\":\"2010 IEEE International Conference on Electro/Information Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Electro/Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2010.5612191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2010.5612191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

膝关节区域的骨分割是进行进一步分析,分类和骨关节炎成像生物标志物发现的第一个重要步骤之一。本文提出了一种高效的基于图切的图像分割算法。当前图切方案面临的挑战之一是如何正确区分感兴趣区域(ROI)和具有与感兴趣区域非常相似特征的背景区域。由于获得一个判别性很强的代价函数并不总是可行的,许多算法需要用户交互来提供大量的种子点。本文提出了一种新的方法,利用高效的基于内容的特征来实现分割,而不需要任何用户交互。在实际膝关节MR图像上的实验结果表明,采用Zijdenbos相似度指数,该方法的平均准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient graph-cut segmentation for knee bone osteoarthritis medical images
The segmentation of bones in the knee region is one of the first essential steps to perform further analysis, classification and osteoarthritis imaging biomarkers discovery. In this paper, an efficient graph-cut based segmentation algorithm is proposed. One of the challenges in current graph-cut schemes is properly distinguishing between regions of interest (ROI) and background regions with features very similar to those of the ROI. Since obtaining a very discriminative cost function is not always feasible, many algorithms require user interaction to provide an extensive number of seed points. In this paper, a new approach is proposed which uses efficient content-based features to achieve segmentation without the need for any user interaction. Experimental results on actual knee MR images demonstrate the effectiveness of the proposed scheme with an average accuracy of 95% using the Zijdenbos similarity index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信