基于som的入侵检测传感器中模糊认知图减少误报

M. Jazzar, A. Jantan
{"title":"基于som的入侵检测传感器中模糊认知图减少误报","authors":"M. Jazzar, A. Jantan","doi":"10.1109/AMS.2008.32","DOIUrl":null,"url":null,"abstract":"Most of the intrusion detection sensors suffer from the high rate of fake alerts that the sensor produce. In this paper, we propose a new approach based on fuzzy cognitive maps (FCM) to reduce false alerts in SOM-based intrusion detection sensors. Initially, each neuron is mapped to its best matching unit in the self organizing map and then updated by the fuzzy cognitive map framework. This updating is achieved through the weights of the neighboring neurons. Based on the domain knowledge of network data (network packets) the SOM/FCM combination presents quantitative and qualitative matching correspondences which in turn reduce the number of suspicious neurons i.e. reduce the number of false alerts. This method work as a unique fuzzy clustering approach and we demonstrate its performance using DARPA 1999 network traffic data set.","PeriodicalId":122964,"journal":{"name":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Using Fuzzy Cognitive Maps to Reduce False Alerts in SOM-Based Intrusion Detection Sensors\",\"authors\":\"M. Jazzar, A. Jantan\",\"doi\":\"10.1109/AMS.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the intrusion detection sensors suffer from the high rate of fake alerts that the sensor produce. In this paper, we propose a new approach based on fuzzy cognitive maps (FCM) to reduce false alerts in SOM-based intrusion detection sensors. Initially, each neuron is mapped to its best matching unit in the self organizing map and then updated by the fuzzy cognitive map framework. This updating is achieved through the weights of the neighboring neurons. Based on the domain knowledge of network data (network packets) the SOM/FCM combination presents quantitative and qualitative matching correspondences which in turn reduce the number of suspicious neurons i.e. reduce the number of false alerts. This method work as a unique fuzzy clustering approach and we demonstrate its performance using DARPA 1999 network traffic data set.\",\"PeriodicalId\":122964,\"journal\":{\"name\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

大多数入侵检测传感器都存在假警报率高的问题。在本文中,我们提出了一种基于模糊认知映射(FCM)的新方法来减少基于som的入侵检测传感器中的错误警报。首先,将每个神经元映射到自组织图中的最佳匹配单元,然后通过模糊认知图框架进行更新。这种更新是通过相邻神经元的权重来实现的。基于网络数据(网络数据包)的领域知识,SOM/FCM组合呈现定量和定性匹配对应,从而减少可疑神经元的数量,即减少错误警报的数量。该方法是一种独特的模糊聚类方法,并利用DARPA 1999网络流量数据集对其性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Fuzzy Cognitive Maps to Reduce False Alerts in SOM-Based Intrusion Detection Sensors
Most of the intrusion detection sensors suffer from the high rate of fake alerts that the sensor produce. In this paper, we propose a new approach based on fuzzy cognitive maps (FCM) to reduce false alerts in SOM-based intrusion detection sensors. Initially, each neuron is mapped to its best matching unit in the self organizing map and then updated by the fuzzy cognitive map framework. This updating is achieved through the weights of the neighboring neurons. Based on the domain knowledge of network data (network packets) the SOM/FCM combination presents quantitative and qualitative matching correspondences which in turn reduce the number of suspicious neurons i.e. reduce the number of false alerts. This method work as a unique fuzzy clustering approach and we demonstrate its performance using DARPA 1999 network traffic data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信