{"title":"输入/输出检查错误分类:聚光灯下的注入错误","authors":"Irena Bojanova, C. E. Galhardo, Sara Moshtari","doi":"10.1109/ISSREW53611.2021.00052","DOIUrl":null,"url":null,"abstract":"In this work, we present an orthogonal classification of input/output check bugs, allowing precise structured descriptions of related software vulnerabilities. We utilize the Bugs Framework (BF) approach to define two language-independent classes that cover all possible kinds of data check bugs. We also identify all types of injection errors, as they are always directly caused by input/output data validation bugs. In BF each class is a taxonomic category of a weakness type defined by sets of operations, cause→consequence relations, and attributes. A BF description of a bug or a weakness is an instance of a taxonomic BF class with one operation, one cause, one consequence, and their attributes. Any vulnerability then can be described as a chain of such instances and their consequence-cause transitions. With our newly developed Data Validation Bugs and Data Verification Bugs classes, we confirm that BF is a classification system that extends the Common Weakness Enumeration (CWE). It allows clear communication about software bugs and weaknesses, providing a structured way to precisely describe real-world vulnerabilities.","PeriodicalId":385392,"journal":{"name":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Input/Output Check Bugs Taxonomy: Injection Errors in Spotlight\",\"authors\":\"Irena Bojanova, C. E. Galhardo, Sara Moshtari\",\"doi\":\"10.1109/ISSREW53611.2021.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an orthogonal classification of input/output check bugs, allowing precise structured descriptions of related software vulnerabilities. We utilize the Bugs Framework (BF) approach to define two language-independent classes that cover all possible kinds of data check bugs. We also identify all types of injection errors, as they are always directly caused by input/output data validation bugs. In BF each class is a taxonomic category of a weakness type defined by sets of operations, cause→consequence relations, and attributes. A BF description of a bug or a weakness is an instance of a taxonomic BF class with one operation, one cause, one consequence, and their attributes. Any vulnerability then can be described as a chain of such instances and their consequence-cause transitions. With our newly developed Data Validation Bugs and Data Verification Bugs classes, we confirm that BF is a classification system that extends the Common Weakness Enumeration (CWE). It allows clear communication about software bugs and weaknesses, providing a structured way to precisely describe real-world vulnerabilities.\",\"PeriodicalId\":385392,\"journal\":{\"name\":\"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW53611.2021.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW53611.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Input/Output Check Bugs Taxonomy: Injection Errors in Spotlight
In this work, we present an orthogonal classification of input/output check bugs, allowing precise structured descriptions of related software vulnerabilities. We utilize the Bugs Framework (BF) approach to define two language-independent classes that cover all possible kinds of data check bugs. We also identify all types of injection errors, as they are always directly caused by input/output data validation bugs. In BF each class is a taxonomic category of a weakness type defined by sets of operations, cause→consequence relations, and attributes. A BF description of a bug or a weakness is an instance of a taxonomic BF class with one operation, one cause, one consequence, and their attributes. Any vulnerability then can be described as a chain of such instances and their consequence-cause transitions. With our newly developed Data Validation Bugs and Data Verification Bugs classes, we confirm that BF is a classification system that extends the Common Weakness Enumeration (CWE). It allows clear communication about software bugs and weaknesses, providing a structured way to precisely describe real-world vulnerabilities.