L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank
{"title":"基于kD-STR的时空数据集缩减与链接","authors":"L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank","doi":"10.1145/3423455.3430317","DOIUrl":null,"url":null,"abstract":"When linking spatio-temporal datasets, the kD-STR algorithm can be used to reduce the datasets and speed up the linking process. However, kD-STR can sacrifice accuracy in the linked dataset whilst retaining unnecessary information. To overcome this, we propose a preprocessing step that removes unnecessary information and an alternative heuristic for kD-STR that prioritises accuracy in the linked output. These are evaluated in a case study linking a road condition dataset with air temperature, rainfall and road traffic data. In this case study, we found the alternative heuristic achieved a 19% improvement in mean error for the linked air temperature features and an 18% reduction in storage used for the rainfall dataset compared to the original kD-STR heuristic. The results in this paper support our hypothesis that, at worse, our alternative heuristic will yield a similar error and storage overhead for linking scenarios as the original kD-STR heuristic. However, in some cases it can give a reduction that is more accurate when linking the datasets whilst using less storage than the original kD-STR algorithm.","PeriodicalId":320377,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing and linking spatio-temporal datasets with kD-STR\",\"authors\":\"L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank\",\"doi\":\"10.1145/3423455.3430317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When linking spatio-temporal datasets, the kD-STR algorithm can be used to reduce the datasets and speed up the linking process. However, kD-STR can sacrifice accuracy in the linked dataset whilst retaining unnecessary information. To overcome this, we propose a preprocessing step that removes unnecessary information and an alternative heuristic for kD-STR that prioritises accuracy in the linked output. These are evaluated in a case study linking a road condition dataset with air temperature, rainfall and road traffic data. In this case study, we found the alternative heuristic achieved a 19% improvement in mean error for the linked air temperature features and an 18% reduction in storage used for the rainfall dataset compared to the original kD-STR heuristic. The results in this paper support our hypothesis that, at worse, our alternative heuristic will yield a similar error and storage overhead for linking scenarios as the original kD-STR heuristic. However, in some cases it can give a reduction that is more accurate when linking the datasets whilst using less storage than the original kD-STR algorithm.\",\"PeriodicalId\":320377,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423455.3430317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423455.3430317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing and linking spatio-temporal datasets with kD-STR
When linking spatio-temporal datasets, the kD-STR algorithm can be used to reduce the datasets and speed up the linking process. However, kD-STR can sacrifice accuracy in the linked dataset whilst retaining unnecessary information. To overcome this, we propose a preprocessing step that removes unnecessary information and an alternative heuristic for kD-STR that prioritises accuracy in the linked output. These are evaluated in a case study linking a road condition dataset with air temperature, rainfall and road traffic data. In this case study, we found the alternative heuristic achieved a 19% improvement in mean error for the linked air temperature features and an 18% reduction in storage used for the rainfall dataset compared to the original kD-STR heuristic. The results in this paper support our hypothesis that, at worse, our alternative heuristic will yield a similar error and storage overhead for linking scenarios as the original kD-STR heuristic. However, in some cases it can give a reduction that is more accurate when linking the datasets whilst using less storage than the original kD-STR algorithm.