基于本体的个性化电视节目协同过滤推荐

Luo Chuanfei, Yao Lingling
{"title":"基于本体的个性化电视节目协同过滤推荐","authors":"Luo Chuanfei, Yao Lingling","doi":"10.1109/ICCIAUTOM.2011.6183953","DOIUrl":null,"url":null,"abstract":"Even though recent hybrid methods have helped to avoid certain limitations of Content-based (CB) filtering and collaborative filtering (CF), scalability and sparsity are still major problems in large-scale recommendation systems. This paper presents a novel collaborative recommendation method based on ontology for personalized TV program application. In the proposed method, we give a new formula to calculate user ratings explicitly according to four TV-watching related behaviors' preferences. More specifically, in order to overcome sparsity problems of CF, we build the TV programs ontology to take semantic relationship to estimate contents' concept similarity. Experiments show that Ontology can explicitly reveal the similarity of programs. In our WEB-TV prototype system, Ontology-based collaborative recommendation method illustrate the ability improving the precision and recall in a large degree.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An ontology-based collaborative filtering recommendation for personalized TV program application\",\"authors\":\"Luo Chuanfei, Yao Lingling\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though recent hybrid methods have helped to avoid certain limitations of Content-based (CB) filtering and collaborative filtering (CF), scalability and sparsity are still major problems in large-scale recommendation systems. This paper presents a novel collaborative recommendation method based on ontology for personalized TV program application. In the proposed method, we give a new formula to calculate user ratings explicitly according to four TV-watching related behaviors' preferences. More specifically, in order to overcome sparsity problems of CF, we build the TV programs ontology to take semantic relationship to estimate contents' concept similarity. Experiments show that Ontology can explicitly reveal the similarity of programs. In our WEB-TV prototype system, Ontology-based collaborative recommendation method illustrate the ability improving the precision and recall in a large degree.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管最近的混合方法有助于避免基于内容(CB)过滤和协同过滤(CF)的某些局限性,但可扩展性和稀疏性仍然是大规模推荐系统中的主要问题。提出了一种基于本体的个性化电视节目协同推荐方法。在提出的方法中,我们给出了一个新的公式,根据四种观看电视相关行为的偏好来明确地计算用户评分。更具体地说,为了克服CF的稀疏性问题,我们构建了电视节目本体,利用语义关系来估计内容的概念相似度。实验表明,本体可以明确地揭示程序之间的相似性。在我们的WEB-TV原型系统中,基于本体的协同推荐方法显示了在很大程度上提高准确率和召回率的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ontology-based collaborative filtering recommendation for personalized TV program application
Even though recent hybrid methods have helped to avoid certain limitations of Content-based (CB) filtering and collaborative filtering (CF), scalability and sparsity are still major problems in large-scale recommendation systems. This paper presents a novel collaborative recommendation method based on ontology for personalized TV program application. In the proposed method, we give a new formula to calculate user ratings explicitly according to four TV-watching related behaviors' preferences. More specifically, in order to overcome sparsity problems of CF, we build the TV programs ontology to take semantic relationship to estimate contents' concept similarity. Experiments show that Ontology can explicitly reveal the similarity of programs. In our WEB-TV prototype system, Ontology-based collaborative recommendation method illustrate the ability improving the precision and recall in a large degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信