通过蛮力并行编程查找部分哈希冲突

Vincent Chiriaco, A. Franzen, Rebecca Thayil, Xiaowen Zhang
{"title":"通过蛮力并行编程查找部分哈希冲突","authors":"Vincent Chiriaco, A. Franzen, Rebecca Thayil, Xiaowen Zhang","doi":"10.1109/SARNOF.2016.7846725","DOIUrl":null,"url":null,"abstract":"A hash function hashes a longer message of arbitrary length into a much shorter bit string of fixed length, called a hash. Inevitably, there will be a lot of different messages being hashed to the same or similar hash. We call this a hash collision or a partial hash collision. By utilizing multiple processors from the CUNY High Performance Computing Center's clusters, we can locate partial collisions for the hash functions MD5 and SHA1 by brute force parallel programming in C with MPI library. The brute force method of finding a second preimage collision entails systematically computing all of the permutations, hashes, and Hamming distances of the target preimage. We explore varying size target strings and the number of processors allocation to examine the effect these variables have on finding partial collisions. The results show that for the same message space the search time for the partial collisions is roughly halved for each doubling of the number of processors; the longer the message is the better partial collisions are produced.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Finding partial hash collisions by brute force parallel programming\",\"authors\":\"Vincent Chiriaco, A. Franzen, Rebecca Thayil, Xiaowen Zhang\",\"doi\":\"10.1109/SARNOF.2016.7846725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hash function hashes a longer message of arbitrary length into a much shorter bit string of fixed length, called a hash. Inevitably, there will be a lot of different messages being hashed to the same or similar hash. We call this a hash collision or a partial hash collision. By utilizing multiple processors from the CUNY High Performance Computing Center's clusters, we can locate partial collisions for the hash functions MD5 and SHA1 by brute force parallel programming in C with MPI library. The brute force method of finding a second preimage collision entails systematically computing all of the permutations, hashes, and Hamming distances of the target preimage. We explore varying size target strings and the number of processors allocation to examine the effect these variables have on finding partial collisions. The results show that for the same message space the search time for the partial collisions is roughly halved for each doubling of the number of processors; the longer the message is the better partial collisions are produced.\",\"PeriodicalId\":370931,\"journal\":{\"name\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SARNOF.2016.7846725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2016.7846725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

散列函数将任意长度的较长消息散列成固定长度的较短位串,称为散列。不可避免地,将有许多不同的消息被散列到相同或相似的散列中。我们称之为哈希冲突或部分哈希冲突。利用来自纽约市立大学高性能计算中心集群的多个处理器,通过使用MPI库在C语言中进行蛮力并行编程,可以定位哈希函数MD5和SHA1的部分冲突。查找第二个预像碰撞的蛮力方法需要系统地计算目标预像的所有排列、哈希和汉明距离。我们研究了不同大小的目标字符串和分配的处理器数量,以检查这些变量对查找部分碰撞的影响。结果表明,对于相同的消息空间,处理器数量每增加一倍,部分冲突的搜索时间大约减半;信息越长,产生的部分碰撞就越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding partial hash collisions by brute force parallel programming
A hash function hashes a longer message of arbitrary length into a much shorter bit string of fixed length, called a hash. Inevitably, there will be a lot of different messages being hashed to the same or similar hash. We call this a hash collision or a partial hash collision. By utilizing multiple processors from the CUNY High Performance Computing Center's clusters, we can locate partial collisions for the hash functions MD5 and SHA1 by brute force parallel programming in C with MPI library. The brute force method of finding a second preimage collision entails systematically computing all of the permutations, hashes, and Hamming distances of the target preimage. We explore varying size target strings and the number of processors allocation to examine the effect these variables have on finding partial collisions. The results show that for the same message space the search time for the partial collisions is roughly halved for each doubling of the number of processors; the longer the message is the better partial collisions are produced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信