基于生物视觉的偏振图像增强

Yifan He, Chunmin Zhang, Tingkui Mu
{"title":"基于生物视觉的偏振图像增强","authors":"Yifan He, Chunmin Zhang, Tingkui Mu","doi":"10.1117/12.2586759","DOIUrl":null,"url":null,"abstract":"For passive polarization detection, limited by the scattering medium and the sensitivity of the detector, the detector usually can only receive the polarization information of the weak target. Moreover, nonlinear operators usually amplify the influence of noise in polarization parameter images. These factors result in low SNR of polarization images, which affects the application of polarization technology in different fields. This paper proposes a polarization image layering algorithm based on the principle of biological vision, which uses the statistical characteristics of the angle of polarization (AoP) as the weight parameter to perform contrast enhancement and denoising operations on the degree of polarization (DoP) image. And the final result can be obtained by simple fusion. Experimental results demonstrate that the algorithm is capable of improving the DOP of the target while suppressing background noise, which may provide new ideas for the application of polarized target detection and polarization visualization in interdisciplinary fields.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarized image enhancement based on biological vision\",\"authors\":\"Yifan He, Chunmin Zhang, Tingkui Mu\",\"doi\":\"10.1117/12.2586759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For passive polarization detection, limited by the scattering medium and the sensitivity of the detector, the detector usually can only receive the polarization information of the weak target. Moreover, nonlinear operators usually amplify the influence of noise in polarization parameter images. These factors result in low SNR of polarization images, which affects the application of polarization technology in different fields. This paper proposes a polarization image layering algorithm based on the principle of biological vision, which uses the statistical characteristics of the angle of polarization (AoP) as the weight parameter to perform contrast enhancement and denoising operations on the degree of polarization (DoP) image. And the final result can be obtained by simple fusion. Experimental results demonstrate that the algorithm is capable of improving the DOP of the target while suppressing background noise, which may provide new ideas for the application of polarized target detection and polarization visualization in interdisciplinary fields.\",\"PeriodicalId\":370739,\"journal\":{\"name\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2586759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于被动极化探测,受散射介质和探测器灵敏度的限制,探测器通常只能接收到弱目标的极化信息。此外,非线性算子通常会放大偏振参数图像中噪声的影响。这些因素导致偏振图像信噪比较低,影响了偏振技术在不同领域的应用。本文提出了一种基于生物视觉原理的偏振图像分层算法,利用偏振角(AoP)的统计特征作为权重参数,对偏振度(DoP)图像进行对比度增强和去噪操作。通过简单的融合就可以得到最终的结果。实验结果表明,该算法能够在抑制背景噪声的同时提高目标的DOP,为极化目标检测和极化可视化在跨学科领域的应用提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarized image enhancement based on biological vision
For passive polarization detection, limited by the scattering medium and the sensitivity of the detector, the detector usually can only receive the polarization information of the weak target. Moreover, nonlinear operators usually amplify the influence of noise in polarization parameter images. These factors result in low SNR of polarization images, which affects the application of polarization technology in different fields. This paper proposes a polarization image layering algorithm based on the principle of biological vision, which uses the statistical characteristics of the angle of polarization (AoP) as the weight parameter to perform contrast enhancement and denoising operations on the degree of polarization (DoP) image. And the final result can be obtained by simple fusion. Experimental results demonstrate that the algorithm is capable of improving the DOP of the target while suppressing background noise, which may provide new ideas for the application of polarized target detection and polarization visualization in interdisciplinary fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信