采用软子空间聚类方法的索引优化复制算法

R. Tang, Panfeng Li
{"title":"采用软子空间聚类方法的索引优化复制算法","authors":"R. Tang, Panfeng Li","doi":"10.1109/ITAIC.2014.7065082","DOIUrl":null,"url":null,"abstract":"This paper proposes a new index optimization replication algorithm framework. First of all, by using independent component analysis technology to build time series feature subspace, we can convert the observation data, which is high dimensional dynamic time series, into static data. Then, use soft subspace clustering method to achieve fuzzy feature weighted clustering. Finally, minimize tracking error and determine the weights of component stocks in the index tracking portfolio. This way, we complete index optimization of replication. The replication method proposed in this paper proves to be effective by positive analysis of China's CSI 300 index optimization replication.","PeriodicalId":111584,"journal":{"name":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Index optimization replication algorithm by using the soft subspace clustering method\",\"authors\":\"R. Tang, Panfeng Li\",\"doi\":\"10.1109/ITAIC.2014.7065082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new index optimization replication algorithm framework. First of all, by using independent component analysis technology to build time series feature subspace, we can convert the observation data, which is high dimensional dynamic time series, into static data. Then, use soft subspace clustering method to achieve fuzzy feature weighted clustering. Finally, minimize tracking error and determine the weights of component stocks in the index tracking portfolio. This way, we complete index optimization of replication. The replication method proposed in this paper proves to be effective by positive analysis of China's CSI 300 index optimization replication.\",\"PeriodicalId\":111584,\"journal\":{\"name\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAIC.2014.7065082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAIC.2014.7065082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的索引优化复制算法框架。首先,利用独立分量分析技术构建时间序列特征子空间,将观测数据这一高维动态时间序列转化为静态数据。然后,采用软子空间聚类方法实现模糊特征加权聚类。最后,最小化跟踪误差并确定指数跟踪组合中成分股的权重。这样,我们就完成了复制的索引优化。通过对中国沪深300指数优化复制的实证分析,证明本文提出的复制方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index optimization replication algorithm by using the soft subspace clustering method
This paper proposes a new index optimization replication algorithm framework. First of all, by using independent component analysis technology to build time series feature subspace, we can convert the observation data, which is high dimensional dynamic time series, into static data. Then, use soft subspace clustering method to achieve fuzzy feature weighted clustering. Finally, minimize tracking error and determine the weights of component stocks in the index tracking portfolio. This way, we complete index optimization of replication. The replication method proposed in this paper proves to be effective by positive analysis of China's CSI 300 index optimization replication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信