Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guang-Xiong Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu
{"title":"在天河1a超级计算机上平衡CPU-GPU协同高阶CFD仿真","authors":"Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guang-Xiong Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu","doi":"10.1109/IPDPS.2014.80","DOIUrl":null,"url":null,"abstract":"HOSTA is an in-house high-order CFD software that can simulate complex flows with complex geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and communication as far as possible. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With our method, we have successfully simulated China's large civil airplane configuration C919 containing 150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-order accurate aerodynamic simulation result with such a complex grid geometry.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Balancing CPU-GPU Collaborative High-Order CFD Simulations on the Tianhe-1A Supercomputer\",\"authors\":\"Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guang-Xiong Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu\",\"doi\":\"10.1109/IPDPS.2014.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HOSTA is an in-house high-order CFD software that can simulate complex flows with complex geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and communication as far as possible. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With our method, we have successfully simulated China's large civil airplane configuration C919 containing 150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-order accurate aerodynamic simulation result with such a complex grid geometry.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balancing CPU-GPU Collaborative High-Order CFD Simulations on the Tianhe-1A Supercomputer
HOSTA is an in-house high-order CFD software that can simulate complex flows with complex geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and communication as far as possible. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With our method, we have successfully simulated China's large civil airplane configuration C919 containing 150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-order accurate aerodynamic simulation result with such a complex grid geometry.