Peva Blanchard, El Mahdi El Mhamdi, R. Guerraoui, J. Stainer
{"title":"简短公告:拜占庭容忍机器学习","authors":"Peva Blanchard, El Mahdi El Mhamdi, R. Guerraoui, J. Stainer","doi":"10.1145/3087801.3087861","DOIUrl":null,"url":null,"abstract":"We report on Krum, the first provably Byzantine-tolerant aggregation rule for distributed Stochastic Gradient Descent (SGD). Krum guarantees the convergence of SGD even in a distributed setting where (asymptotically) up to half of the workers can be malicious adversaries trying to attack the learning system.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Brief Announcement: Byzantine-Tolerant Machine Learning\",\"authors\":\"Peva Blanchard, El Mahdi El Mhamdi, R. Guerraoui, J. Stainer\",\"doi\":\"10.1145/3087801.3087861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on Krum, the first provably Byzantine-tolerant aggregation rule for distributed Stochastic Gradient Descent (SGD). Krum guarantees the convergence of SGD even in a distributed setting where (asymptotically) up to half of the workers can be malicious adversaries trying to attack the learning system.\",\"PeriodicalId\":324970,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087801.3087861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report on Krum, the first provably Byzantine-tolerant aggregation rule for distributed Stochastic Gradient Descent (SGD). Krum guarantees the convergence of SGD even in a distributed setting where (asymptotically) up to half of the workers can be malicious adversaries trying to attack the learning system.