{"title":"确定用于计算微电网概率功率流的电池充电状态随机模型","authors":"J. Cepeda, Santiago Chamba","doi":"10.37116/revistaenergia.v16.n1.2019.334","DOIUrl":null,"url":null,"abstract":"Este documento propone una novedosa metodología para la estimación probabilística del modelo estocástico del estado de carga (SOC por su nombre en inglés “State of Charge”) de los sistemas de almacenamiento de energía mediante baterías (BESS por su nombre en inglés “Battery Energy Storage Systems”). La estimación apropiada del SOC es uno de los parámetros más importantes en la planificación de la expansión y operación de las microrredes. Para ello, se estructura una herramienta computacional que enlaza los programas de DIgSILENT PowerFactory y Python. Este aplicativo permite, de forma probabilística, evaluar la operación de la microrred considerando la disponibilidad del recurso primario intermitente de las fuentes de energía renovables y la variabilidad de la demanda eléctrica. Como resultado se determinan los modelos estocásticos del SOC del BESS para cada período de tiempo. La metodología propuesta se aplica a una microrred de prueba que se conecta a la “Barra 6” del sistema de prueba WSCC de tres máquinas y nueve barras, obteniéndose resultados prometedores.","PeriodicalId":234227,"journal":{"name":"Revista Técnica \"energía\"","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes\",\"authors\":\"J. Cepeda, Santiago Chamba\",\"doi\":\"10.37116/revistaenergia.v16.n1.2019.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este documento propone una novedosa metodología para la estimación probabilística del modelo estocástico del estado de carga (SOC por su nombre en inglés “State of Charge”) de los sistemas de almacenamiento de energía mediante baterías (BESS por su nombre en inglés “Battery Energy Storage Systems”). La estimación apropiada del SOC es uno de los parámetros más importantes en la planificación de la expansión y operación de las microrredes. Para ello, se estructura una herramienta computacional que enlaza los programas de DIgSILENT PowerFactory y Python. Este aplicativo permite, de forma probabilística, evaluar la operación de la microrred considerando la disponibilidad del recurso primario intermitente de las fuentes de energía renovables y la variabilidad de la demanda eléctrica. Como resultado se determinan los modelos estocásticos del SOC del BESS para cada período de tiempo. La metodología propuesta se aplica a una microrred de prueba que se conecta a la “Barra 6” del sistema de prueba WSCC de tres máquinas y nueve barras, obteniéndose resultados prometedores.\",\"PeriodicalId\":234227,\"journal\":{\"name\":\"Revista Técnica \\\"energía\\\"\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Técnica \\\"energía\\\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37116/revistaenergia.v16.n1.2019.334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Técnica \"energía\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37116/revistaenergia.v16.n1.2019.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes
Este documento propone una novedosa metodología para la estimación probabilística del modelo estocástico del estado de carga (SOC por su nombre en inglés “State of Charge”) de los sistemas de almacenamiento de energía mediante baterías (BESS por su nombre en inglés “Battery Energy Storage Systems”). La estimación apropiada del SOC es uno de los parámetros más importantes en la planificación de la expansión y operación de las microrredes. Para ello, se estructura una herramienta computacional que enlaza los programas de DIgSILENT PowerFactory y Python. Este aplicativo permite, de forma probabilística, evaluar la operación de la microrred considerando la disponibilidad del recurso primario intermitente de las fuentes de energía renovables y la variabilidad de la demanda eléctrica. Como resultado se determinan los modelos estocásticos del SOC del BESS para cada período de tiempo. La metodología propuesta se aplica a una microrred de prueba que se conecta a la “Barra 6” del sistema de prueba WSCC de tres máquinas y nueve barras, obteniéndose resultados prometedores.