统计学习和VC理论

P. Bartlett
{"title":"统计学习和VC理论","authors":"P. Bartlett","doi":"10.1109/TUTCAS.2001.946954","DOIUrl":null,"url":null,"abstract":"The article applies statistical learning theory to the supervised learning problem. Pattern recognition is covered, including Vapnik-Chervonenkis (VC) theory and the implications for support vector machines (SVMs), neural networks and decision trees. Real predictions are given for scale-sensitive dimensions. The article concludes by analysing large margin classification.","PeriodicalId":376181,"journal":{"name":"Tutorial Guide. ISCAS 2001. IEEE International Symposium on Circuits and Systems (Cat. No.01TH8573)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical learning and VC theory\",\"authors\":\"P. Bartlett\",\"doi\":\"10.1109/TUTCAS.2001.946954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article applies statistical learning theory to the supervised learning problem. Pattern recognition is covered, including Vapnik-Chervonenkis (VC) theory and the implications for support vector machines (SVMs), neural networks and decision trees. Real predictions are given for scale-sensitive dimensions. The article concludes by analysing large margin classification.\",\"PeriodicalId\":376181,\"journal\":{\"name\":\"Tutorial Guide. ISCAS 2001. IEEE International Symposium on Circuits and Systems (Cat. No.01TH8573)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tutorial Guide. ISCAS 2001. IEEE International Symposium on Circuits and Systems (Cat. No.01TH8573)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TUTCAS.2001.946954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tutorial Guide. ISCAS 2001. IEEE International Symposium on Circuits and Systems (Cat. No.01TH8573)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TUTCAS.2001.946954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将统计学习理论应用于监督学习问题。模式识别涵盖,包括Vapnik-Chervonenkis (VC)理论和支持向量机(svm),神经网络和决策树的含义。对尺度敏感的维度给出了真实的预测。文章最后通过对大利润分类的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical learning and VC theory
The article applies statistical learning theory to the supervised learning problem. Pattern recognition is covered, including Vapnik-Chervonenkis (VC) theory and the implications for support vector machines (SVMs), neural networks and decision trees. Real predictions are given for scale-sensitive dimensions. The article concludes by analysing large margin classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信