不完全CSI下的统计鲁棒MIMO检测学习

Yi Sun, Hong Shen, Wei Xu, Chunming Zhao
{"title":"不完全CSI下的统计鲁棒MIMO检测学习","authors":"Yi Sun, Hong Shen, Wei Xu, Chunming Zhao","doi":"10.1109/ISWCS56560.2022.9940387","DOIUrl":null,"url":null,"abstract":"For multi-input multi-output (MIMO) systems, the detection performance can be severely deteriorated by the channel state information (CSI) uncertainties. In this paper, we propose a learnable robust MIMO detector by taking the statistics of CSI imperfection into account. Specifically, we first formulate a robust maximum likelihood (ML) detection problem and then develop an alternating direction method of multipli-ers (ADMM) based solution, which involves the calculations of closed-form expressions in each iteration. Furthermore, a model-driven neural network is established by unfolding the derived ADMM algorithm whose penalty parameters are learned via offline training. Simulation results demonstrate that the proposed network can considerably outperform the conventional mismatched ML detector and even approach the optimal robust ML detector with only 5 layers.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Statistically Robust MIMO Detection with Imperfect CSI\",\"authors\":\"Yi Sun, Hong Shen, Wei Xu, Chunming Zhao\",\"doi\":\"10.1109/ISWCS56560.2022.9940387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multi-input multi-output (MIMO) systems, the detection performance can be severely deteriorated by the channel state information (CSI) uncertainties. In this paper, we propose a learnable robust MIMO detector by taking the statistics of CSI imperfection into account. Specifically, we first formulate a robust maximum likelihood (ML) detection problem and then develop an alternating direction method of multipli-ers (ADMM) based solution, which involves the calculations of closed-form expressions in each iteration. Furthermore, a model-driven neural network is established by unfolding the derived ADMM algorithm whose penalty parameters are learned via offline training. Simulation results demonstrate that the proposed network can considerably outperform the conventional mismatched ML detector and even approach the optimal robust ML detector with only 5 layers.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于多输入多输出(MIMO)系统,信道状态信息(CSI)的不确定性会严重影响检测性能。在本文中,我们提出了一个可学习的鲁棒MIMO检测器,该检测器考虑了CSI不完全性的统计。具体而言,我们首先制定了鲁棒最大似然(ML)检测问题,然后开发了基于乘法器交替方向方法(ADMM)的解决方案,该方法涉及每次迭代中封闭形式表达式的计算。在此基础上,对导出的ADMM算法进行展开,建立模型驱动的神经网络,并通过离线训练学习惩罚参数。仿真结果表明,该网络可以显著优于传统的不匹配机器学习检测器,甚至接近最优的5层鲁棒机器学习检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Statistically Robust MIMO Detection with Imperfect CSI
For multi-input multi-output (MIMO) systems, the detection performance can be severely deteriorated by the channel state information (CSI) uncertainties. In this paper, we propose a learnable robust MIMO detector by taking the statistics of CSI imperfection into account. Specifically, we first formulate a robust maximum likelihood (ML) detection problem and then develop an alternating direction method of multipli-ers (ADMM) based solution, which involves the calculations of closed-form expressions in each iteration. Furthermore, a model-driven neural network is established by unfolding the derived ADMM algorithm whose penalty parameters are learned via offline training. Simulation results demonstrate that the proposed network can considerably outperform the conventional mismatched ML detector and even approach the optimal robust ML detector with only 5 layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信