三维多指夹具运动学可行性分析

Y. Guan, Hong Zhang
{"title":"三维多指夹具运动学可行性分析","authors":"Y. Guan, Hong Zhang","doi":"10.1109/TRA.2003.810235","DOIUrl":null,"url":null,"abstract":"Planning of a dextrous manipulation task for a multifingered hand requires the feasibility of all the grasps involved throughout the manipulation process. In this paper, we address the problem of determining whether a desired grasp of a polyhedral object is kinematically feasible. In our study, we define a grasp in terms of a system of contact pairs between the topological features of the hand and the object, and formulate the grasp feasibility analysis as a set of equality and inequality constraints in the variables of the hand and object configurations. The feasibility of a grasp then becomes equivalent to the simultaneous satisfaction of all the constraints. This allows us to cast the feasibility analysis conveniently as a constrained nonlinear optimization problem and solve it numerically with commercially available software. The effectiveness of our approach is illustrated with an example of grasping a cuboid using a three-fingered robotic hand.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Kinematic feasibility analysis of 3-D multifingered grasps\",\"authors\":\"Y. Guan, Hong Zhang\",\"doi\":\"10.1109/TRA.2003.810235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning of a dextrous manipulation task for a multifingered hand requires the feasibility of all the grasps involved throughout the manipulation process. In this paper, we address the problem of determining whether a desired grasp of a polyhedral object is kinematically feasible. In our study, we define a grasp in terms of a system of contact pairs between the topological features of the hand and the object, and formulate the grasp feasibility analysis as a set of equality and inequality constraints in the variables of the hand and object configurations. The feasibility of a grasp then becomes equivalent to the simultaneous satisfaction of all the constraints. This allows us to cast the feasibility analysis conveniently as a constrained nonlinear optimization problem and solve it numerically with commercially available software. The effectiveness of our approach is illustrated with an example of grasping a cuboid using a three-fingered robotic hand.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.810235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.810235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

规划多指手的灵巧操作任务需要在整个操作过程中涉及的所有抓取的可行性。在本文中,我们解决了确定多面体物体的期望抓取是否在运动学上可行的问题。在我们的研究中,我们将抓握定义为手与物体拓扑特征之间的接触对系统,并将抓握可行性分析表述为手和物体构型变量中的一组等式和不等式约束。抓握的可行性就等同于同时满足所有约束条件。这使我们可以方便地将可行性分析转换为约束非线性优化问题,并使用商业软件进行数值求解。通过一个使用三指机械手抓取长方体的例子说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic feasibility analysis of 3-D multifingered grasps
Planning of a dextrous manipulation task for a multifingered hand requires the feasibility of all the grasps involved throughout the manipulation process. In this paper, we address the problem of determining whether a desired grasp of a polyhedral object is kinematically feasible. In our study, we define a grasp in terms of a system of contact pairs between the topological features of the hand and the object, and formulate the grasp feasibility analysis as a set of equality and inequality constraints in the variables of the hand and object configurations. The feasibility of a grasp then becomes equivalent to the simultaneous satisfaction of all the constraints. This allows us to cast the feasibility analysis conveniently as a constrained nonlinear optimization problem and solve it numerically with commercially available software. The effectiveness of our approach is illustrated with an example of grasping a cuboid using a three-fingered robotic hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信