Li Wei, Nitin Kumar, Venkata Nishanth Lolla, Eamonn J. Keogh, S. Lonardi, C. Ratanamahatana, H. V. Herle
{"title":"可视化和数据挖掘医疗时间序列的实用工具","authors":"Li Wei, Nitin Kumar, Venkata Nishanth Lolla, Eamonn J. Keogh, S. Lonardi, C. Ratanamahatana, H. V. Herle","doi":"10.1109/CBMS.2005.17","DOIUrl":null,"url":null,"abstract":"The increasing interest in time series data mining has had surprisingly little impact on real world medical applications. Practitioners who work with time series on a daily basis rarely take advantage of the wealth of tools that the data mining community has made available. In this work, we attempt to address this problem by introducing a parameter-light tool that allows users to efficiently navigate through large collections of time series. Our approach extracts features from a time series of arbitrary length and uses information about the relative frequency of these features to color a bitmap in a principled way. By visualizing the similarities and differences within a collection of bitmaps, a user can quickly discover clusters, anomalies, and other regularities within the data collection. We demonstrate the utility of our approach with a set of comprehensive experiments on real datasets from a variety of medical domains","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Practical Tool for Visualizing and Data Mining Medical Time Series\",\"authors\":\"Li Wei, Nitin Kumar, Venkata Nishanth Lolla, Eamonn J. Keogh, S. Lonardi, C. Ratanamahatana, H. V. Herle\",\"doi\":\"10.1109/CBMS.2005.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest in time series data mining has had surprisingly little impact on real world medical applications. Practitioners who work with time series on a daily basis rarely take advantage of the wealth of tools that the data mining community has made available. In this work, we attempt to address this problem by introducing a parameter-light tool that allows users to efficiently navigate through large collections of time series. Our approach extracts features from a time series of arbitrary length and uses information about the relative frequency of these features to color a bitmap in a principled way. By visualizing the similarities and differences within a collection of bitmaps, a user can quickly discover clusters, anomalies, and other regularities within the data collection. We demonstrate the utility of our approach with a set of comprehensive experiments on real datasets from a variety of medical domains\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Practical Tool for Visualizing and Data Mining Medical Time Series
The increasing interest in time series data mining has had surprisingly little impact on real world medical applications. Practitioners who work with time series on a daily basis rarely take advantage of the wealth of tools that the data mining community has made available. In this work, we attempt to address this problem by introducing a parameter-light tool that allows users to efficiently navigate through large collections of time series. Our approach extracts features from a time series of arbitrary length and uses information about the relative frequency of these features to color a bitmap in a principled way. By visualizing the similarities and differences within a collection of bitmaps, a user can quickly discover clusters, anomalies, and other regularities within the data collection. We demonstrate the utility of our approach with a set of comprehensive experiments on real datasets from a variety of medical domains