GaAs基扩散焊高压二极管堆叠

J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang
{"title":"GaAs基扩散焊高压二极管堆叠","authors":"J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang","doi":"10.1109/SMELEC.2010.5549505","DOIUrl":null,"url":null,"abstract":"The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GaAs based diffusion welded high voltage diode stacks\",\"authors\":\"J. Toompuu, O. Korolkov, N. Sleptsuk, V. Vojtovich, T. Rang\",\"doi\":\"10.1109/SMELEC.2010.5549505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

确定了用于高压二极管堆叠的砷化镓结构的技术要求。通过接触电阻测量,估计了p+衬底的合适掺杂水平。分析表明,对于电流密度约为0.5-1 A/cm2的p+衬底,比接触电阻对掺杂浓度的依赖性较弱(至少在5x1018至1x1019cm-3范围内)。I-V测量表明,n层浓度为1x1015cm-3的Al/p+ -引脚触点具有锁型势垒,导致二极管堆叠中电压降非常高。对于p+ -引脚- n+结构,正向电压降取决于掺杂水平和涂层厚度。反向电压仅取决于引脚层厚度。发现对于二极管叠层,p+衬底的合适掺杂浓度约为5 × 1018cm - 3,外延p+ -引脚- n+ GaAs结构的n+层掺杂浓度必须高于1 × 1018cm3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaAs based diffusion welded high voltage diode stacks
The determination of technical requirements for GaAs epistructures intended for high voltage diode stacks has been made. The suitable doping level of p+ substrate was estimated by the contact resistance measurements. Analysis has shown that for the p+ substrates with the current densities about 0.5-1 A/cm2 the specific contact resistance depends weakly on doping concentration (at least in the range from 5x1018 to 1x1019cm–3). The I-V measurements showed that Al/p+−pin contacts for n-layer concentration 1x1015cm–3 have lock-type barrier causing very high voltage drops in diode stacks. For p+−pin−n+ structures the forward voltage drop depends on doping level as well as on epilayer thickness. The reverse voltage depends on pin-layer thickness only. It was found that for diode stacks the suitable doping for p+ substrate is about 5x1018cm–3 and n+ layer doping in epitaxial p+−pin−n+ GaAs structures concentration must be higher than 1x1018 cm3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信