特征检测神经元发育的机制

F. Peper, H. Noda
{"title":"特征检测神经元发育的机制","authors":"F. Peper, H. Noda","doi":"10.1109/ANNES.1995.499439","DOIUrl":null,"url":null,"abstract":"The mammalian retina and visual cortex contain feature detecting neurons with a remarkable similarity to neurons in artificial neural networks for principal component analysis. Hebbian-type learning is one of the mechanisms responsible for the development of such neurons. It does not model, however, control of the number of neurons that develop in response to input. We propose a mechanism that adaptively controls this number. The mechanism utilizes the variances of neurons' outputs and encodes them as the lengths of the neural network's synaptic weight vectors, thus allowing only the synapses of those neurons to develop that represent significant information about the neural network's input and suppressing neurons' synapses that don't.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A mechanism for the development of feature detecting neurons\",\"authors\":\"F. Peper, H. Noda\",\"doi\":\"10.1109/ANNES.1995.499439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mammalian retina and visual cortex contain feature detecting neurons with a remarkable similarity to neurons in artificial neural networks for principal component analysis. Hebbian-type learning is one of the mechanisms responsible for the development of such neurons. It does not model, however, control of the number of neurons that develop in response to input. We propose a mechanism that adaptively controls this number. The mechanism utilizes the variances of neurons' outputs and encodes them as the lengths of the neural network's synaptic weight vectors, thus allowing only the synapses of those neurons to develop that represent significant information about the neural network's input and suppressing neurons' synapses that don't.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

哺乳动物视网膜和视觉皮层包含特征检测神经元,它们与用于主成分分析的人工神经网络中的神经元具有显著的相似性。赫比式学习是这种神经元发育的机制之一。然而,它并没有模拟神经元数量的控制,这些神经元的数量是根据输入而产生的。我们提出了一种自适应控制这一数字的机制。该机制利用神经元输出的方差,并将其编码为神经网络突触权重向量的长度,从而只允许这些神经元的突触发展为代表神经网络输入的重要信息,并抑制不代表神经网络输入的神经元突触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mechanism for the development of feature detecting neurons
The mammalian retina and visual cortex contain feature detecting neurons with a remarkable similarity to neurons in artificial neural networks for principal component analysis. Hebbian-type learning is one of the mechanisms responsible for the development of such neurons. It does not model, however, control of the number of neurons that develop in response to input. We propose a mechanism that adaptively controls this number. The mechanism utilizes the variances of neurons' outputs and encodes them as the lengths of the neural network's synaptic weight vectors, thus allowing only the synapses of those neurons to develop that represent significant information about the neural network's input and suppressing neurons' synapses that don't.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信