OLALA:高效文档布局标注的对象级主动学习

Zejiang Shen, Jian Zhao, Melissa Dell, Yaoliang Yu, Weining Li
{"title":"OLALA:高效文档布局标注的对象级主动学习","authors":"Zejiang Shen, Jian Zhao, Melissa Dell, Yaoliang Yu, Weining Li","doi":"10.18653/v1/2022.nlpcss-1.19","DOIUrl":null,"url":null,"abstract":"Layout detection is an essential step for accurately extracting structured contents from historical documents. The intricate and varied layouts present in these document images make it expensive to label the numerous layout regions that can be densely arranged on each page. Current active learning methods typically rank and label samples at the image level, where the annotation budget is not optimally spent due to the overexposure of common objects per image. Inspired by recent progress in semi-supervised learning and self-training, we propose OLALA, an Object-Level Active Learning framework for efficient document layout Annotation. OLALA aims to optimize the annotation process by selectively annotating only the most ambiguous regions within an image, while using automatically generated labels for the rest. Central to OLALA is a perturbation-based scoring function that determines which objects require manual annotation. Extensive experiments show that OLALA can significantly boost model performance and improve annotation efficiency, facilitating the extraction of masses of structured text for downstream NLP applications.","PeriodicalId":438120,"journal":{"name":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"OLALA: Object-Level Active Learning for Efficient Document Layout Annotation\",\"authors\":\"Zejiang Shen, Jian Zhao, Melissa Dell, Yaoliang Yu, Weining Li\",\"doi\":\"10.18653/v1/2022.nlpcss-1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layout detection is an essential step for accurately extracting structured contents from historical documents. The intricate and varied layouts present in these document images make it expensive to label the numerous layout regions that can be densely arranged on each page. Current active learning methods typically rank and label samples at the image level, where the annotation budget is not optimally spent due to the overexposure of common objects per image. Inspired by recent progress in semi-supervised learning and self-training, we propose OLALA, an Object-Level Active Learning framework for efficient document layout Annotation. OLALA aims to optimize the annotation process by selectively annotating only the most ambiguous regions within an image, while using automatically generated labels for the rest. Central to OLALA is a perturbation-based scoring function that determines which objects require manual annotation. Extensive experiments show that OLALA can significantly boost model performance and improve annotation efficiency, facilitating the extraction of masses of structured text for downstream NLP applications.\",\"PeriodicalId\":438120,\"journal\":{\"name\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.nlpcss-1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nlpcss-1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

版面检测是从历史文档中准确提取结构化内容的重要步骤。这些文档图像中呈现的复杂多样的布局使得标记可以密集排列在每个页面上的众多布局区域的成本很高。当前的主动学习方法通常在图像级别对样本进行排序和标记,由于每张图像的常见对象过度曝光,标注预算没有得到最优的使用。受最近半监督学习和自我训练进展的启发,我们提出了OLALA,一种用于高效文档布局标注的对象级主动学习框架。OLALA旨在通过选择性地注释图像中最模糊的区域来优化注释过程,而对其余部分使用自动生成的标签。OLALA的核心是一个基于扰动的评分功能,它决定哪些对象需要手动注释。大量实验表明,OLALA可以显著提高模型性能和标注效率,为下游NLP应用提取大量结构化文本提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OLALA: Object-Level Active Learning for Efficient Document Layout Annotation
Layout detection is an essential step for accurately extracting structured contents from historical documents. The intricate and varied layouts present in these document images make it expensive to label the numerous layout regions that can be densely arranged on each page. Current active learning methods typically rank and label samples at the image level, where the annotation budget is not optimally spent due to the overexposure of common objects per image. Inspired by recent progress in semi-supervised learning and self-training, we propose OLALA, an Object-Level Active Learning framework for efficient document layout Annotation. OLALA aims to optimize the annotation process by selectively annotating only the most ambiguous regions within an image, while using automatically generated labels for the rest. Central to OLALA is a perturbation-based scoring function that determines which objects require manual annotation. Extensive experiments show that OLALA can significantly boost model performance and improve annotation efficiency, facilitating the extraction of masses of structured text for downstream NLP applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信