{"title":"低注入能级下跃迁能对氧化锌半导体带内光致发光的影响","authors":"Getu Endale","doi":"10.13189/UJMS.2019.070301","DOIUrl":null,"url":null,"abstract":"This paper presents the effects of the transition energies on photoluminescence intensities in Zinc Oxide compound semiconductor due to the intra-band transition of free carriers. The excitation of free carriers from the valence band to conduction band and from different localized state to the conduction band by the illumination of sufficient energy is considered. A theoretical model for minority carrier trapping is also investigated to explain the dependence of the photoluminescence on the trap energy. Variation of photoluminescence intensities along with localized state energy and transition energy is considered at different temperatures. As temperature increases the photoluminescence due to the transition of free electrons from the conduction band to the valence band, from the conduction band to the localized states and from the localized states to the valence band are increasing.","PeriodicalId":375998,"journal":{"name":"Universal Journal of Materials Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of Transition Energy on Intra-Band Photoluminescence of Zinc Oxide (ZnO) Semiconductor under Low injection Level\",\"authors\":\"Getu Endale\",\"doi\":\"10.13189/UJMS.2019.070301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the effects of the transition energies on photoluminescence intensities in Zinc Oxide compound semiconductor due to the intra-band transition of free carriers. The excitation of free carriers from the valence band to conduction band and from different localized state to the conduction band by the illumination of sufficient energy is considered. A theoretical model for minority carrier trapping is also investigated to explain the dependence of the photoluminescence on the trap energy. Variation of photoluminescence intensities along with localized state energy and transition energy is considered at different temperatures. As temperature increases the photoluminescence due to the transition of free electrons from the conduction band to the valence band, from the conduction band to the localized states and from the localized states to the valence band are increasing.\",\"PeriodicalId\":375998,\"journal\":{\"name\":\"Universal Journal of Materials Science\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJMS.2019.070301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJMS.2019.070301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Transition Energy on Intra-Band Photoluminescence of Zinc Oxide (ZnO) Semiconductor under Low injection Level
This paper presents the effects of the transition energies on photoluminescence intensities in Zinc Oxide compound semiconductor due to the intra-band transition of free carriers. The excitation of free carriers from the valence band to conduction band and from different localized state to the conduction band by the illumination of sufficient energy is considered. A theoretical model for minority carrier trapping is also investigated to explain the dependence of the photoluminescence on the trap energy. Variation of photoluminescence intensities along with localized state energy and transition energy is considered at different temperatures. As temperature increases the photoluminescence due to the transition of free electrons from the conduction band to the valence band, from the conduction band to the localized states and from the localized states to the valence band are increasing.